cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338046 G.f.: Sum_{k>=0} x^(2^k) / (1 - x^(2^k))^4.

Original entry on oeis.org

1, 5, 10, 25, 35, 66, 84, 145, 165, 255, 286, 430, 455, 644, 680, 961, 969, 1305, 1330, 1795, 1771, 2310, 2300, 3030, 2925, 3731, 3654, 4704, 4495, 5640, 5456, 6945, 6545, 8109, 7770, 9741, 9139, 11210, 10660, 13275, 12341, 15015, 14190, 17490, 16215, 19596, 18424, 22630
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Sum[x^(2^k) /(1 - x^(2^k))^4, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] + n (n + 1) (n + 2)/6, n (n + 1) (n + 2)/6]; Table[a[n], {n, 1, 48}]
    Table[(1/6) DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] # (# + 1) (# + 2) &], {n, 1, 48}]

Formula

G.f. A(x) satisfies: A(x) = A(x^2) + x / (1 - x)^4.
a(2*n) = a(n) + A002492(n), a(2*n+1) = A000447(n+1).
a(n) = (1/6) * Sum_{d|n} A209229(n/d) * d * (d + 1) * (d + 2).
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A000335.

A373186 Expansion of Sum_{k>=0} x^(3^k) / (1 - x^(3^k))^3.

Original entry on oeis.org

1, 3, 7, 10, 15, 24, 28, 36, 52, 55, 66, 88, 91, 105, 135, 136, 153, 195, 190, 210, 259, 253, 276, 336, 325, 351, 430, 406, 435, 520, 496, 528, 627, 595, 630, 754, 703, 741, 871, 820, 861, 1008, 946, 990, 1170, 1081, 1128, 1312, 1225, 1275, 1479, 1378, 1431, 1680, 1540
Offset: 1

Views

Author

Seiichi Manyama, May 27 2024

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = x/(1 - x)^3 + A(x^3).
a(3*n+1) = A000217(3*n+1), a(3*n+2) = A000217(3*n+2) and a(3*n+3) = A000217(3*n+3) + a(n+1) for n >= 0.
Showing 1-2 of 2 results.