cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338084 Number of equivalence classes of X-based filling of diagonals in a diagonal Latin square of order 2n (or 2n+1).

Original entry on oeis.org

1, 0, 2, 3, 20, 67, 596
Offset: 0

Views

Author

Eduard I. Vatutin, Oct 08 2020

Keywords

Comments

Supplemental for A309283.
The number of solutions in an equivalence class with the main diagonal in ascending order is at most 4*2^n*n!. This maximum is only achieved for n >= 5. - Andrew Howroyd, Mar 27 2023

Examples

			From _Andrew Howroyd_, Mar 27 2023: (Start)
For n = 5, the following is an example solution in an equivalence class of maximum size. The second square shows the effect of swapping the two diagonals and renumbering so that the main diagonal is still in ascending order.
   0 . . . . . . . . 1    0 . . . . . . . . 1
   . 1 . . . . . . 0 .    . 1 . . . . . . 0 .
   . . 2 . . . . 3 . .    . . 2 . . . . 3 . .
   . . . 3 . . 2 . . .    . . . 3 . . 2 . . .
   . . . . 4 6 . . . .    . . . . 4 9 . . . .
   . . . . 7 5 . . . .    . . . . 6 5 . . . .
   . . . 5 . . 6 . . .    . . . 4 . . 6 . . .
   . . 8 . . . . 7 . .    . . 5 . . . . 7 . .
   . 9 . . . . . . 8 .    . 7 . . . . . . 8 .
   4 . . . . . . . . 9    8 . . . . . . . . 9
(End)
		

Crossrefs

Formula

a(n) >= A000316(n) / (4*2^n*n!). - Andrew Howroyd, Mar 27 2023