A338100 Number of spanning trees in the n X 2 king graph.
1, 16, 192, 2304, 27648, 331776, 3981312, 47775744, 573308928, 6879707136, 82556485632, 990677827584, 11888133931008, 142657607172096, 1711891286065152, 20542695432781824, 246512345193381888, 2958148142320582656, 35497777707846991872, 425973332494163902464, 5111679989929966829568
Offset: 1
Links
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
- Index entries for linear recurrences with constant coefficients, signature (12).
Crossrefs
Column 2 of A338029.
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_nXk_king_graph(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) if i < k: grids.append((i + (j - 1) * k, i + j * k + 1)) if i > 1: grids.append((i + (j - 1) * k, i + j * k - 1)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) return grids def A338029(n, k): if n == 1 or k == 1: return 1 universe = make_nXk_king_graph(n, k) GraphSet.set_universe(universe) spanning_trees = GraphSet.trees(is_spanning=True) return spanning_trees.len() def A338100(n): return A338029(n, 2) print([A338100(n) for n in range(1, 20)])
Formula
a(n) = 12 * a(n-1) for n > 2.
a(n) = 3^(n-2) * 4^n for n > 1.
G.f.: x*(1 + 4*x)/(1 - 12*x). - Stefano Spezia, Nov 29 2020