A338123 Place three points evenly spaced around a circle, draw n evenly spaced rays from each of the points, a(n) is the number of vertices thus created. See Comments for details.
3, 4, 15, 19, 33, 31, 63, 55, 78, 82, 120, 67, 162, 154, 189, 175, 261, 217, 327, 259, 360, 370, 456, 283, 534, 514, 579, 523, 705, 619, 807, 703, 858, 874, 1008, 691, 1122, 1090, 1185, 1111, 1365, 1237, 1503, 1339, 1572, 1594, 1776, 1339, 1926, 1882, 2007, 1891
Offset: 1
Keywords
Examples
For n=1 there are three rays that do not intersect, so a(1)=3.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..800
Programs
-
PARI
a(n)=if( \ n%6==5,(3*n^2 + 10*n + 7)/4, \ n%12==1,(3*n^2 + 10*n + 11)/4, \ n%12==2||n%12==10,(3*n^2 + 28)/4, \ n%12==3,(3*n^2 + 4*n + 21)/4, \ n%12==6,(3*n^2 - 10*n + 76)/4, \ n%12==7,(3*n^2 + 10*n + 35)/4, \ n%12==9,(3*n^2 + 4*n + 33)/4, \ n%24==4||n%24==20,(3*n^2 - 12*n + 76)/4, \ n%24==8||n%24==16,(3*n^2 - 12*n + 124)/4, \ n%120==0,(3*n^2 - 40*n - 20)/4, \ n%120==12||n%120==36||n%120==84||n%120==108,(3*n^2 - 40*n + 316)/4, \ n%120==24||n%120==48||n%120==72||n%120==96,(3*n^2 - 40*n + 364)/4, \ n%120==60,(3*n^2 - 40*n - 68)/4, \ -1); vector(798, n, a(n+2))
Formula
a(n) = 2160-a(n-4)+a(n-12)+a(n-16)+a(n-60)+a(n-64)-a(n-72)-a(n-76), n>78. (conjectured)
From Lars Blomberg, Oct 25 2020: (Start)
Conjectured for 3 <= n <= 800.
Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d.
+===========================================+
| r | m | a | b | c | d |
+-------------------------------------------+
| 5 | 6 | 3 | 10 | 7 | 4 |
| 1 | 12 | 3 | 10 | 11 | 4 |
| 2, 10 | 12 | 3 | | 28 | 4 |
| 3 | 12 | 3 | 4 | 21 | 4 |
| 6 | 12 | 3 | -10 | 76 | 4 |
| 7 | 12 | 3 | 10 | 35 | 4 |
| 9 | 12 | 3 | 4 | 33 | 4 |
| 4, 20 | 24 | 3 | -12 | 76 | 4 |
| 8, 16 | 24 | 3 | -12 | 124 | 4 |
| 0 | 120 | 3 | -40 | -20 | 4 |
| 12, 36, 84, 108 | 120 | 3 | -40 | 316 | 4 |
| 24, 48, 72, 96 | 120 | 3 | -40 | 364 | 4 |
| 60 | 120 | 3 | -40 | -68 | 4 |
+===========================================+ (End)
Comments