A338170 a(n) is the number of divisors d of n such that tau(d) divides sigma(d).
1, 1, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 2, 3, 2, 2, 3, 3, 2, 6, 2, 1, 4, 2, 4, 3, 2, 3, 4, 3, 2, 7, 2, 4, 5, 3, 2, 3, 3, 2, 4, 2, 2, 5, 4, 4, 4, 2, 2, 8, 2, 3, 4, 1, 4, 7, 2, 3, 4, 6, 2, 3, 2, 2, 4, 3, 4, 6, 2, 3, 3, 2, 2, 7, 4, 3, 4, 4, 2, 7, 4, 4, 4, 3, 4, 4, 2, 4, 5, 3, 2, 6, 2, 2, 8
Offset: 1
Keywords
Examples
a(6) = 3 because there are 3 arithmetic divisors of 6 (1, 3 and 6): sigma(1)/tau(1) = 1/1 = 1; sigma(3)/tau(3) = 4/2 = 2; sigma(6)/tau(6) = 12/4 = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Magma
[#[d: d in Divisors(n) | IsIntegral(&+Divisors(d) / #Divisors(d))]: n in [1..100]];
-
Mathematica
a[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] &]; Array[a, 100] (* Amiram Eldar, Oct 15 2020 *)
-
PARI
a(n) = sumdiv(n, d, !(sigma(d) % numdiv(d))); \\ Michel Marcus, Oct 15 2020
Formula
Extensions
Data section extended up to 105 terms by Antti Karttunen, Dec 12 2021
Comments