cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338200 The number of similarity classes of pointed reflection spaces of residue two in an n-dimensional vector space over GF(2).

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 9, 12, 17, 21, 27, 33, 41, 48, 58, 67, 79, 90, 104, 117, 134, 149, 168, 186, 208, 228, 253, 276, 304, 330, 361, 390, 425, 457, 495, 531, 573, 612, 658, 701, 751, 798, 852, 903, 962, 1017, 1080, 1140, 1208, 1272, 1345, 1414, 1492, 1566, 1649
Offset: 1

Views

Author

Masaya Tomie, Oct 16 2020

Keywords

Crossrefs

Cf. A069905.

Programs

  • Mathematica
    F[n_] := If[EvenQ[n],
      n (n - 2)/8 +
       2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, n/2}] +
       Length[IntegerPartitions[(n + 2)/2, {3}]],
      2*Floor[(n - 1)/4]*Floor[(n + 1)/4] +
       2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, (n - 1)/2}] +
       Length[IntegerPartitions[(n + 1)/2, {3}]] +
       Length[IntegerPartitions[(n + 3)/2, {3}]]]
    (* Second program: *)
    LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1}, {0,0,1,2,4,6,9,12,17,21}, 55] (* Jean-François Alcover, Nov 13 2020 *)
  • PARI
    concat([0,0], Vec((1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^50))) \\ Andrew Howroyd, Oct 29 2020

Formula

a(n) = (1/8)*n*(n-2) + 2*(Sum_{k=3..n/2} p(k,3)) + p((n+2)/2,3) if n is even; a(n) = 2*floor((n-1)/4)*floor((n+1)/4) + 2*(Sum_{k=3..(n-1)/2} p(k,3)) + p((n+1)/2,3) + p((n+3)/2,3) if n is odd, where p(k,3) = A069905(k) is the number of partitions of k into three parts.
From Andrew Howroyd, Oct 29 2020: (Start)
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n > 10.
G.f.: x^3*(1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
(End)