A338410 Primes p such that (p+2)/3 and (p+3)/2 are prime.
7, 19, 31, 139, 199, 211, 379, 499, 631, 919, 1039, 1291, 1399, 1759, 2179, 2719, 2731, 2971, 3271, 3691, 4591, 5791, 5851, 6079, 7591, 8011, 8779, 10039, 11299, 11719, 11731, 12979, 14251, 15031, 15511, 15679, 18451, 18859, 20071, 21379, 21559, 22051, 22639, 23599, 24499, 24691, 25339, 25579
Offset: 1
Keywords
Examples
a(3) = 31 is in the sequence because 31, (31+2)/3 = 11 and ((31+3)/2) = 17 are prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= t -> isprime(t) and isprime((t+2)/3) and isprime((t+3)/2): select(filter, [seq(i,i=7..30000,12)]);
-
Mathematica
Select[Prime[Range[3000]],AllTrue[{(#+2)/3,(#+3)/2},PrimeQ]&] (* Harvey P. Dale, May 20 2023 *)
-
PARI
isok(p) = iferr(isprime(p) && isprime((p+2)/3) && isprime((p+3)/2), E, 0); \\ Michel Marcus, Oct 25 2020
Comments