cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338463 Expansion of g.f.: (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^2.

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 5, 8, 9, 12, 15, 20, 23, 28, 36, 44, 52, 62, 76, 90, 106, 124, 149, 176, 203, 236, 279, 324, 372, 430, 499, 576, 657, 752, 867, 992, 1124, 1280, 1463, 1662, 1876, 2124, 2410, 2722, 3061, 3446, 3889, 4374, 4896, 5490, 6166, 6900, 7700, 8600
Offset: 2

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( (-1 + (&*[1+x^(2*j+1): j in [0..m+2]]) )^2 )); // G. C. Greubel, Sep 07 2023
    
  • Mathematica
    nmax = 55; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
    With[{k=2}, Drop[CoefficientList[Series[(2/QPochhammer[-1,-x] -1)^k, {x,0,80}], x], k]] (* G. C. Greubel, Sep 07 2023 *)
  • SageMath
    m=80
    def f(x): return (-1 + product(1+x^(2*j-1) for j in range(1,m+3)) )^2
    def A338463_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    a=A338463_list(m); a[2:] # G. C. Greubel, Sep 07 2023

Formula

G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^2.
a(n) = Sum_{k=1..n-1} A000700(k) * A000700(n-k).
a(n) = A073252(n) - 2 * A000700(n) for n > 0.
a(n) = [x^n]( (2/QPochhammer(-1,-x) - 1)^2 ). - G. C. Greubel, Sep 07 2023