A338487 a(n) is the number of non-isomorphic, serial/parallel indecomposable resistor networks with n edges, n >= 5, allowing dead ends.
1, 5, 36, 225, 1453, 9228, 58701, 372695, 2370155, 15117459, 96868355, 624326820, 4051597971, 26496771687, 174749567296, 1162909625384, 7812487626519, 53005074235282, 363305517314289, 2516343623698964, 17615995074375601, 124669825295709879, 892060223018406365
Offset: 5
Keywords
Examples
a(5) = 1. The only serial/parallel nondecomposable network with 5 resistors: . (+)-----A The "bridge" / \ see A337516 B---C \ / (-)-----Z . a(6) = 5. Constructed from the bridge with 5 resistors. Allowed ways of adding a new edge are: * an existing resistor is replaced by two parallel (N1, N2). * a new resistor is appended (N3). * an existing resistor is replaced by two serial (N4, N5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-A . A . A / / \ . / \ . D / \ / / \ . / \ . | / \ / / \ . / \ . | / \ | / \ . / \ . | / \ |/ \ . /.-------.\ . |/ \ B-----------C . B. .C . B-----------C \ / . \`-------ยด/ . \ / \ / . \ / . \ / \ / . \ / . \ / \ / . \ / . \ / \ / . \ / . \ / Z . Z . Z . . N1: new edge . N2: new edge . N3: new node D A-B . B-C . with edge B-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . A / \ . / \ / \ . / \ D \ . / \ / \ . / \ / \ . / \ B-----------C . B-----D-----C \ / . \ / \ / . \ / \ / . \ / \ / . \ / \ / . \ / Z . Z . N4: new node D . N5: new node D A-B now A-D-B . B-C now B-D-C . . . . . . . . . . . . . . . . . . . . . . a(7) = 36. There are 24 interesting networks without dead ends. See the pdf document with their description in the link section.
References
- Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.
Links
- Allan Gottlieb, Oct 3, 2003 addendum (Karnofsky).
- Andrew Howroyd, PARI Program
- Joel Karnofsky, Solution of problem from Technology Review's Puzzle Corner Oct 3, 2003, Feb 23, 2004.
- Rainer Rosenthal, Maple Program, Dec 02 2020.
- Rainer Rosenthal, The 24 networks with 7 resistors without dead ends (version 2), Feb 08 2021.
Crossrefs
Programs
-
Maple
SetA338487(5) := {"011111"}: # "bridge" adjacency matrix coded for n from 6 to MAXEDGES do SetA338487(n) := C_D_E(SetA338487(n-1)); # see link section od: seq(nops(SetA338487(n)),n=1..MAXEDGES); # Rainer Rosenthal, Dec 02 2020
Extensions
a(10)-a(27) from Andrew Howroyd, Dec 02 2020
Comments