A338621 Triangle read by rows: A(n, k) is the number of partitions of n with "aft" value k (see comments).
1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 3, 2, 2, 4, 3, 2, 2, 4, 5, 2, 2, 2, 4, 6, 7, 1, 2, 2, 4, 6, 9, 6, 1, 2, 2, 4, 6, 10, 11, 7, 2, 2, 4, 6, 10, 13, 14, 5, 2, 2, 4, 6, 10, 14, 19, 15, 5, 2, 2, 4, 6, 10, 14, 21, 22, 17, 3, 2, 2, 4, 6, 10, 14, 22, 27, 29, 17, 2, 2, 2, 4, 6, 10, 14, 22, 29, 36, 33, 17
Offset: 0
Examples
A(6, 2) = 4 since there are four partitions with 6 cells and aft 2, namely (4, 2), (2, 2, 1, 1), (4, 1, 1), (3, 1, 1, 1). Triangle starts: 1; 1; 2; 2, 1; 2, 2, 1; 2, 2, 3; 2, 2, 4, 3; 2, 2, 4, 5, 2; 2, 2, 4, 6, 7, 1; 2, 2, 4, 6, 9, 6, 1; 2, 2, 4, 6, 10, 11, 7; 2, 2, 4, 6, 10, 13, 14, 5; 2, 2, 4, 6, 10, 14, 19, 15, 5; 2, 2, 4, 6, 10, 14, 21, 22, 17, 3; 2, 2, 4, 6, 10, 14, 22, 27, 29, 17, 2; 2, 2, 4, 6, 10, 14, 22, 29, 36, 33, 17, 1; 2, 2, 4, 6, 10, 14, 22, 30, 41, 45, 39, 15, 1; 2, 2, 4, 6, 10, 14, 22, 30, 43, 52, 57, 41, 14; 2, 2, 4, 6, 10, 14, 22, 30, 44, 57, 69, 67, 47, 11; 2, 2, 4, 6, 10, 14, 22, 30, 44, 59, 76, 85, 81, 46, 9; ...
References
- S. C. Billey, M. Konvalinka, and J. P. Swanson, Asymptotic normality of the major index on standard tableaux, Adv. in Appl. Math. 113 (2020).
Links
- S. C. Billey, M. Konvalinka, and J. P. Swanson, Asymptotic normality of the major index on standard tableaux, arXiv:1905.00975 [math.CO], 2019.
- FindStat - Combinatorial Statistic Finder, The aft of an integer partition
Programs
-
Mathematica
CoefficientList[ SeriesCoefficient[ 1 + Sum[If[r == 0, 1, 2] q^(r + 1) Sum[ q^(2 s) t^s QBinomial[2 s + r, s, q t], {s, 0, 30}], {r, 0, 30}], {q, 0, 20}], t]
-
PARI
Row(n)={if(n==0, [1], my(v=vector(n)); forpart(p=n, v[1+n-max(#p, p[#p])]++); Vecrev(Polrev(v)))} { for(n=1, 15, print(Row(n))) } \\ Andrew Howroyd, Nov 04 2020
Formula
G.f.: Sum_{lambda} t^aft(lambda) * q^|lambda| = 1 + Sum_{r >= 0} c_r * q^(r+1) * Sum_{s >= 0} q^(2*s) * t^s * [2*s + r, s]_(q*t) where c_0 = 1, c_r = 2 for r >= 1, and [a, b]_q is a Gaussian binomial coefficient (see A022166).
Comments