A338646 Primes p such that 47^(p-1) == 1 + A*p (mod p^2) and |A/p| is a new record low.
2, 3, 5, 19, 37, 47, 38693, 44657, 148091, 178621, 692521, 4584379, 262148693, 347850691, 502176491, 1139746919, 1387837067, 5291181761, 92653098679, 202259581243
Offset: 1
Examples
p | abs(A/p) (frac) | abs(A/p) (dec) ---------------------------------------------------- 2 | 1/2 | 0.5 3 | 1/3 | 0.333333333333333 5 | 1/5 | 0.2 19 | 2/19 | 0.105263157894736 37 | 2/37 | 0.054054054054054 47 | 1/2209 | 0.000452693526482 38693 | 10/38693 | 0.000258444679916 44657 | 4/44657 | 0.000089571623709 148091 | 13/148091 | 0.000087783862625 178621 | 1/178621 | 0.000005598445871 692521 | 1/692521 | 0.000001443999532 4584379 | 1/4584379 | 0.000000218132052 262148693 | 39/262148693 | 0.000000148770530 347850691 | 47/347850691 | 0.000000135115442 502176491 | 51/502176491 | 0.000000101557920 1139746919 | 75/1139746919 | 0.000000065804082 1387837067 | 8/1387837067 | 0.000000005764365 5291181761 | 3/5291181761 | 0.000000000566981 92653098679 | 7/92653098679 | 0.000000000075550 202259581243 | 5/202259581243 | 0.000000000024720
Links
- F. G. Dorais and D. Klyve, A Wieferich Prime Search up to 6.7 × 10^15, Journal of Integer Sequences, Vol. 14 (2011), Article 11.9.2.
- Richard Fischer, Thema: Fermatquotient B^(P-1) == 1 (mod P^2)
Crossrefs
Cf. A339855.
Programs
-
PARI
my(a=0, ab=0, r=0); forprime(p=1, , a = (lift(Mod(47, p^2)^(p-1))-1)/p; ab=abs(a/p); if(r==0, r=ab; print1(p, ", "), if(ab < r, r=ab; print1(p, ", "))))
Extensions
a(19) from Felix Fröhlich, Jul 01 2021
a(20) from Felix Fröhlich, Jul 02 2021
Comments