cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A318638 Expansion of Sum_{n>=1} ( (3 + x^n)^n - 3^n ).

Original entry on oeis.org

1, 6, 27, 109, 405, 1467, 5103, 17550, 59050, 197100, 649539, 2126991, 6908733, 22325625, 71744625, 229602925, 731794257, 2324602206, 7360989291, 23245524600, 73222475256, 230128853031, 721764371007, 2259440202825, 7060738412026, 22029517662984, 68630377426119, 213516777941712, 663426981193869, 2058911488612863, 6382625094934119, 19765549255048254, 61149666233193318
Offset: 1

Views

Author

Paul D. Hanna, Sep 07 2018

Keywords

Examples

			G.f.: A(x) = x + 6*x^2 + 27*x^3 + 109*x^4 + 405*x^5 + 1467*x^6 + 5103*x^7 + 17550*x^8 + 59050*x^9 + 197100*x^10 + 649539*x^11 + 2126991*x^12 + ...
such that
A(x) = x + (3 + x^2)^2 - 3^2 + (3 + x^3)^3 - 3^3 + (3 + x^4)^4 - 3^4 + (3 + x^5)^5 - 3^5 + (3 + x^6)^6 - 3^6 + (3 + x^7)^7 - 3^7 + ...
RELATED SERIES.
The g.f. A(x) equals following series at y = 3:
Sum_{n>=1} ((y + x^n)^n - y^n) = x + 2*y*x^2 + 3*y^2*x^3 + (4*y^3 + 1)*x^4 + 5*y^4*x^5 + (6*y^5 + 3*y)*x^6 + 7*y^6*x^7 + (8*y^7 + 6*y^2)*x^8 + (9*y^8 + 1)*x^9 + (10*y^9 + 10*y^3)*x^10 + 11*y^10*x^11 + (12*y^11 + 15*y^4 + 4*y)*x^12 + 13*y^12*x^13 + (14*y^13 + 21*y^5)*x^14 + (15*y^14 + 10*y^2)*x^15 + (16*y^15 + 28*y^6 + 1)*x^16 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( sum(m=1,n, (x^m + 3 +x*O(x^n))^m - 3^m), n)}
    for(n=1,100, print1(a(n),", "))
    
  • PARI
    a(n) = sumdiv(n, d, 3^(d-n/d)* binomial(d, n/d)); \\ Seiichi Manyama, Apr 24 2021

Formula

a(n) ~ n * 3^(n-1). - Vaclav Kotesovec, Oct 10 2020
a(n) = Sum_{d|n} 3^(d - n/d) * binomial(d, n/d). - Seiichi Manyama, Apr 24 2021
G.f.: Sum_{k >=1} x^(k^2)/(1-3*x^k)^(k+1). - Seiichi Manyama, Oct 30 2023

A338685 a(n) = Sum_{d|n} d^n * binomial(d, n/d).

Original entry on oeis.org

1, 8, 81, 1040, 15625, 282123, 5764801, 134610944, 3486804084, 100097656250, 3138428376721, 107025924222976, 3937376385699289, 155582338242342053, 6568408660888671875, 295155786482995691520, 14063084452067724991009, 708240750793407501694308, 37589973457545958193355601
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^n * Binomial[#, n/#] &]; Array[a, 20] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^n*binomial(d, n/d));
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, (1+(k*x)^k)^k-1))

Formula

G.f.: Sum_{k >= 1} ((1 + (k * x)^k)^k - 1).
If p is prime, a(p) = p^(p+1).

A338694 a(n) = Sum_{d|n} d^d * binomial(d, n/d).

Original entry on oeis.org

1, 8, 81, 1028, 15625, 280017, 5764801, 134219264, 3486784428, 100000031250, 3138428376721, 106993206079936, 3937376385699289, 155568095575106627, 6568408355712921875, 295147905179822588160, 14063084452067724991009, 708235345355351624428356, 37589973457545958193355601
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^# * Binomial[#, n/#] &]; Array[a, 20] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(d, n/d));
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, (k+k*x^k)^k-k^k))

Formula

G.f.: Sum_{k>=1} ( (k + k * x^k)^k - k^k ) = Sum_{k>=1} k^k * ( (1 + x^k)^k - 1 ).
If p is prime, a(p) = p^(p+1).

A360712 Expansion of Sum_{k>0} (k * x * (1 + k*x^k))^k.

Original entry on oeis.org

1, 5, 27, 272, 3125, 46915, 823543, 16781312, 387421218, 10000078125, 285311670611, 8916102153177, 302875106592253, 11112006865911623, 437893890381640625, 18446744074783358976, 827240261886336764177, 39346408075327943829273
Offset: 1

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(#+n/#-1) * Binomial[#, n/# - 1] &]; Array[a, 20] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x*(1+k*x^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, d^(d+n/d-1)*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} d^(d+n/d-1) * binomial(d,n/d-1).
If p is an odd prime, a(p) = p^p.

A360759 a(n) = Sum_{d|n} d^(d+n/d) * binomial(d,n/d).

Original entry on oeis.org

1, 16, 243, 4112, 78125, 1680345, 40353607, 1073766400, 31381060338, 1000000781250, 34522712143931, 1283918489808640, 51185893014090757, 2177953338656796883, 98526125335697265625, 4722366482899710050304, 239072435685151324847153
Offset: 1

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# + n/#) * Binomial[#, n/#] &]; Array[a, 20] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^(d+n/d)*binomial(d, n/d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^k*((1+k*x^k)^k-1)))

Formula

G.f.: Sum_{k>0} k^k * ( (1 + k*x^k)^k - 1 ).
If p is prime, a(p) = p^(p+2).

A360770 Expansion of Sum_{k>0} (x * (k + x^k))^k.

Original entry on oeis.org

1, 5, 27, 260, 3125, 46684, 823543, 16777472, 387420498, 10000003125, 285311670611, 8916100495009, 302875106592253, 11112006826381559, 437893890380860625, 18446744073726328848, 827240261886336764177, 39346408075296925015353
Offset: 1

Views

Author

Seiichi Manyama, Feb 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# - n/# + 1) * Binomial[#, n/# - 1] &]; Array[a, 20] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (x*(k+x^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, d^(d-n/d+1)*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} d^(d-n/d+1) * binomial(d,n/d-1).
If p is an odd prime, a(p) = p^p.
Showing 1-6 of 6 results.