A338706 Number of 2-linear trees on n nodes.
0, 0, 0, 0, 0, 1, 3, 10, 24, 56, 114, 224, 411, 733, 1252, 2091, 3393, 5408, 8440, 12982, 19650, 29388, 43394, 63430, 91754, 131584, 187057, 263932, 369624, 514253, 710838, 976876, 1334828, 1814492, 2454011, 3303436, 4426627, 5906599, 7848883, 10389557
Offset: 1
Keywords
Examples
The a(6) = 1 tree is: o o | | o---o---o---o
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Tanay Wakhare, Eric Wityk, and Charles R. Johnson, The proportion of trees that are linear, Discrete Mathematics 343.10 (2020): 112008. Also Corrigendum and preprint arXiv:1901.08502 [math.CO], 2019-2020. See Tables 1 and 2 (but beware errors).
Programs
-
PARI
seq(n)=my(p=1/(eta(x + O(x^(n-3))))); Vec(((x*(p - 1/(1-x)))^2 + x^2*(subst(p,x,x^2) - 1/(1-x^2)))/(2*(1-x)), -n) \\ Andrew Howroyd, Dec 17 2020
Formula
G.f.: ((x*(P(x) - 1/(1-x)))^2 + x^2*(P(x^2) - 1/(1-x^2)))/(2*(1-x)) where P(x) is the g.f. of A000041. - Andrew Howroyd, Dec 17 2020
Extensions
Terms a(31) and beyond from Andrew Howroyd, Dec 17 2020
Comments