cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A338710 Erroneous version of A338706.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 10, 24, 56, 114, 224, 441, 733, 1252, 2091, 3393, 5408, 8440, 12982, 19650, 29388, 43394, 63430, 91754, 131584, 187057, 263932, 369624, 514253
Offset: 1

Views

Author

R. J. Mathar, Aug 05 2024

Keywords

Comments

Included in accordance with OEIS policy of including published but erroneous sequences to serve as pointers to the correct values.

A130131 Number of n-lobsters.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 23, 47, 105, 231, 532, 1224, 2872, 6739, 15955, 37776, 89779, 213381, 507949, 1209184, 2880382, 6861351, 16348887, 38955354, 92831577, 221219963, 527197861, 1256385522, 2994200524, 7135736613, 17005929485, 40528629737, 96588403995, 230190847410
Offset: 1

Views

Author

Eric W. Weisstein, May 11 2007

Keywords

Comments

A lobster graph is a tree having the property that the removal of all leaf nodes leaves a caterpillar graph (see A005418). - N. J. A. Sloane, Nov 05 2020

Examples

			a(10) = 105 = A000055(10) - 1 because all trees with 10 vertices are lobsters except this one:
    o-o-o
   /
  o-o-o-o
   \
    o-o-o
Also, all trees with 10 vertices are linear (all vertices of degree >2 belong to a single path) except this one:
     o   o
      \ /
       o
       |
       o
     /   \
    o     o
   / \   / \
  o   o o   o
		

Crossrefs

Row sums of A380363.
Cf. k-linear trees for k = 1..4: A004250, A338706, A338707, A338708.

Programs

  • Mathematica
    eta = QPochhammer;
    s[n_] := With[{ox = O[x]^n}, x^2 ((1/eta[x + ox] - 1/(1 - x))^2/(1 - x/eta[x + ox]) + (1/eta[x^2 + ox] - 1/(1 - x^2))(1 + x/eta[x + ox])/(1 - x^2/eta[x^2 + ox]))/2 + x/eta[x + ox] - x^3/((1 - x)^2*(1 + x))];
    CoefficientList[s[32], x] // Rest (* Jean-François Alcover, Nov 17 2020, after Andrew Howroyd *)
  • PARI
    s(n)={my(ox=O(x^n)); x^2*((1/eta(x+ox)-1/(1-x))^2/(1-x/eta(x+ox)) + (1/eta(x^2+ox)-1/(1-x^2))*(1+x/eta(x+ox))/(1-x^2/eta(x^2+ox)))/2 + x/eta(x+ox) - x^3/((1-x)^2*(1+x))}
    Vec(s(30)) \\ Andrew Howroyd, Nov 02 2017

Extensions

a(15)-a(32) from Washington Bomfim, Feb 23 2011

A338707 Number of 3-linear trees on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 5, 22, 74, 219, 576, 1394, 3150, 6733, 13744, 26969, 51185, 94323, 169453, 297533, 512006, 865050, 1437739, 2353756, 3801041, 6060918, 9552826, 14894428, 22991659, 35159606, 53299703, 80137271, 119563216, 177091225, 260504790, 380720841
Offset: 1

Views

Author

N. J. A. Sloane, Nov 05 2020, using data supplied by Eric Wityk

Keywords

Comments

A k-linear tree is a tree with exactly k vertices of degree 3 or higher all of which lie on a path. - Andrew Howroyd, Dec 17 2020

Crossrefs

Column k=3 of A380363 and A238415.

Programs

  • PARI
    seq(n)={my(p=1/(eta(x + O(x^(n-5))))); Vec(x^3*(p-1)*((p - 1/(1-x))^2/(1-x)^2 + (subst(p,x,x^2) - 1/(1-x^2))/(1-x^2))/2, -n)} \\ Andrew Howroyd, Dec 17 2020

Formula

G.f.: x^3*(P(x)-1)*((P(x) - 1/(1-x))^2/(1-x)^2 + (P(x^2) - 1/(1-x^2))/(1-x^2))/2 where P(x) is the g.f. of A000041. - Andrew Howroyd, Dec 17 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Dec 17 2020

A338708 Number of 4-linear trees on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 37, 158, 591, 1896, 5537, 14812, 37133, 87841, 198267, 429199, 896731, 1814978, 3572810, 6858774, 12874977, 23679669, 42752787, 75887244, 132618635, 228443753, 388297169, 651868064, 1081771385, 1775876764, 2885944062, 4645393253, 7410678577, 11722238660, 18394159344
Offset: 1

Views

Author

N. J. A. Sloane, Nov 05 2020

Keywords

Crossrefs

Column k=4 of A380363.

Programs

  • PARI
    seq(n)={my(A=O(x^(n-5)), p=1/eta(x + A), p2=1/eta(x^2 + A)); Vec(((p - 1/(1-x))^2*(p - 1)^2/(1 - x)^3 + (p2 - 1/(1 - x^2))*(p2 - 1)/((1 - x^2)*(1 - x)))/2, -n)} \\ Andrew Howroyd, Jan 26 2025

Formula

G.f.: x^4*((P(x) - 1/(1 - x))^2*(P(x) - 1)^2/(1 - x)^3 + (P(x^2) - 1/(1 - x^2))*(P(x^2) - 1)/((1 - x^2)*(1 - x)))/2 where P(x) is the g.f. of A000041. - Andrew Howroyd, Jan 26 2025

Extensions

a(26) onwards from Andrew Howroyd, Jan 26 2025

A380363 Triangle read by rows: T(n,k) is the number of linear trees with n vertices and k vertices of degree >= 3, 0 <= k <= max(0, floor(n/2)-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 3, 1, 11, 10, 1, 1, 17, 24, 5, 1, 25, 56, 22, 1, 1, 36, 114, 74, 6, 1, 50, 224, 219, 37, 1, 1, 70, 411, 576, 158, 8, 1, 94, 733, 1394, 591, 58, 1, 1, 127, 1252, 3150, 1896, 304, 9, 1, 168, 2091, 6733, 5537, 1342, 82, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 26 2025

Keywords

Comments

A linear tree is a tree with all vertices of degree > 2 belonging to a single path. These are equinumerous with lobster graphs. All trees having at most 3 vertices of degree > 2 are linear trees.

Examples

			Triangle begins:
  1;
  1;
  1;
  1;
  1,   1;
  1,   2;
  1,   4,    1;
  1,   7,    3;
  1,  11,   10,    1;
  1,  17,   24,    5;
  1,  25,   56,   22,    1;
  1,  36,  114,   74,    6;
  1,  50,  224,  219,   37,   1;
  1,  70,  411,  576,  158,   8;
  1,  94,  733, 1394,  591,  58, 1;
  1, 127, 1252, 3150, 1896, 304, 9;
  ...
		

Crossrefs

Columns 0..4 are A000012, A004250(n-1), A338706, A338707, A338708.
Row sums are A130131.
Cf. A238415 (initial columns same up to k=3).
Showing 1-5 of 5 results.