cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339461 Number of Fibonacci divisors of n^2 + 1.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 4, 1, 2, 1, 3, 3, 2, 1, 4, 2, 3, 1, 2, 1, 3, 2, 2, 1, 3, 2, 3, 3, 2, 1, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 5, 2, 2, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 3, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 4, 1, 2, 2
Offset: 0

Views

Author

Michel Lagneau, Dec 06 2020

Keywords

Examples

			a(13) = 4 because the divisors of 13^2 + 1 = 170 are {1, 2, 5, 10, 17, 34, 85, 170} with 4 Fibonacci divisors: 1, 2, 5 and 34.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):nn:=100:F:={}:
    for k from 1 to nn do:
      F:=F union {fibonacci(k)}:
    od:
       for n from 0 to 90 do:
        f:=n^2+1:d:=divisors(f):
        lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1):
       od:
  • Mathematica
    Array[DivisorSum[#^2 + 1, 1 &, Or @@ Map[IntegerQ@ Sqrt[#] &, 5 #^2 + 4 {-1, 1}] &] &, 105, 0] (* Michael De Vlieger, Dec 07 2020 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8);
    a(n) = sumdiv(n^2+1, d, isfib(d)); \\ Michel Marcus, Dec 06 2020

Formula

a(A005574(n)) = 1 for n > 2.
a(n) = A005086(A002522(n)). - Michel Marcus, Dec 06 2020

A335568 a(n) is the number m such that F(m) is the greatest prime Fibonacci divisor of F(n)^2 + 1 where F(n) is the n-th Fibonacci number, or 0 if no such prime factor exists.

Original entry on oeis.org

3, 3, 5, 5, 7, 7, 5, 7, 11, 11, 13, 13, 11, 13, 17, 17, 5, 17, 17, 7, 23, 23, 7, 23, 23, 5, 29, 29, 3, 29, 29, 11, 7, 11, 11, 7, 13, 13, 0, 13, 43, 43, 5, 43, 47, 47, 7, 47, 47, 17, 7, 17, 17, 11, 3, 11, 11, 3, 3, 0, 7, 7, 13, 13, 7, 13, 23, 23, 0, 23, 23, 0, 5
Offset: 1

Views

Author

Chai Wah Wu, Nov 20 2020

Keywords

Comments

Fibonacci index of the terms in A338762.
All terms are prime or 0. - Alois P. Heinz, Nov 21 2020

Examples

			a(10) = 11 because F(10)^2 + 1 = 55^2 + 1 = 3026 = 2*17*89 and 89 = F(11) is the greatest prime Fibonacci divisor of 3026.
		

Crossrefs

Cf. A000040, A000045, A005478, A245306, A338762, A338794 (indices of the 0's).

Programs

  • Maple
    a:= proc(n) local i, F, m, t; F, m, t:=
          [1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1;
          for i from 3 while F[2]<=t do if isprime(F[2]) and
            irem(t, F[2])=0 then m:=i fi; F:= [F[2], F[1]+F[2]]
          od; m
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 21 2020
  • Mathematica
    a[n_] := Module[{i, F = {1, 2}, m = 0, t}, t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; For[i = 3, F[[2]] <= t, i++, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = i]; F = {F[[2]], F[[1]] + F[[2]]}]; m];
    Array[a, 100] (* Jean-François Alcover, Dec 01 2020, after Alois P. Heinz *)

Formula

A000045(a(n)) = A338762(n).

A339082 a(n) is the number m such that F(prime(m)) is the greatest prime Fibonacci divisor of F(n)^2 + 1 where F(n) is the n-th Fibonacci number, or 0 if no such prime factor exists.

Original entry on oeis.org

2, 2, 3, 3, 4, 4, 3, 4, 5, 5, 6, 6, 5, 6, 7, 7, 3, 7, 7, 4, 9, 9, 4, 9, 9, 3, 10, 10, 2, 10, 10, 5, 4, 5, 5, 4, 6, 6, 0, 6, 14, 14, 3, 14, 15, 15, 4, 15, 15, 7, 4, 7, 7, 5, 2, 5, 5, 2, 2, 0, 4, 4, 6, 6, 4, 6, 9, 9, 0, 9, 9, 0, 3, 3, 5, 5, 3, 5, 5, 2, 23, 23, 7
Offset: 1

Views

Author

Chai Wah Wu, Nov 24 2020

Keywords

Comments

If a(n) > 0, then prime(a(n)) = A335568(n).

Examples

			a(15) = 7 because F(15)^2 + 1 = 610^2 + 1 = 372101 = 233*1597, 1597 = F(17) is the greatest prime Fibonacci divisor of 372101 and 17 is the 7th prime.
		

Crossrefs

Cf. A000040, A000045, A005478, A245306, A335568, A338762, A338794 (indices of the 0's).

Programs

  • Maple
    a:= proc(n) local i, F, m, t; F, m, t:=
          [1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1;
          for i from 3 while F[2]<=t do if isprime(F[2]) and
            irem(t, F[2])=0 then m:=i fi; F:= [F[2], F[1]+F[2]]
          od; numtheory[pi](m)
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 25 2020
  • Mathematica
    a[n_] := Module[{i, F = {1, 2}, m = 0, t}, t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; For[i = 3, F[[2]] <= t, i++, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = i]; F = {F[[2]], F[[1]] + F[[2]]}]; PrimePi[m]];
    Array[a, 100] (* Jean-François Alcover, Dec 01 2020, after Alois P. Heinz *)

Formula

If A335568(n) = 0, then a(n) = 0, otherwise a(n) = A000720(A335568(n)).

A339173 Index of record values of A339082.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 21, 27, 41, 45, 81, 129, 135, 357, 429, 431, 447, 507, 567, 569, 2969, 4721, 5385, 9309, 9675, 14429, 25559, 30755, 35997, 37509, 50831, 81837, 104909, 130019, 148089, 201105, 397377, 433779, 590039, 593687, 604709, 931515, 1049895, 1285605, 1636005, 1803057, 1968719, 2904351, 3244367, 3340365
Offset: 1

Views

Author

Chai Wah Wu, Nov 25 2020

Keywords

Comments

Also index of record values of A335568.

Crossrefs

Formula

A339082(a(n)) = A119984(n).
For n > 1, a(n) = A001605(n+1)-2.
Showing 1-4 of 4 results.