cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338805 Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} (1-x^j)^(-u/j).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 18, 28, 12, 1, 48, 170, 100, 20, 1, 480, 988, 870, 260, 30, 1, 1440, 7896, 7588, 3150, 560, 42, 1, 20160, 60492, 73808, 37408, 9100, 1064, 56, 1, 120960, 555264, 764524, 460656, 140448, 22428, 1848, 72, 1, 1451520, 5819904, 8448120, 5952700, 2162160, 436296, 49140, 3000, 90, 1
Offset: 1

Views

Author

Seiichi Manyama, Nov 10 2020

Keywords

Comments

Also the Bell transform of A318249.
If we use sigma(n,1) in Vladeta Jovovic's formulas in A008298 then one gets the D'Arcais numbers, if we use sigma(n,0) then this sequence arises. # Peter Luschny, Jun 01 2022

Examples

			exp(Sum_{n>0} u*d(n)*x^n/n) = 1 + u*x + (2*u+u^2)*x^2/2! + (4*u+6*u^2+u^3)*x^3/3! + ... .
Triangle begins:
      1;
      2,     1;
      4,     6,     1;
     18,    28,    12,     1;
     48,   170,   100,    20,    1;
    480,   988,   870,   260,   30,    1;
   1440,  7896,  7588,  3150,  560,   42,  1;
  20160, 60492, 73808, 37408, 9100, 1064, 56, 1;
		

Crossrefs

Column k=1..3 give A318249, A338810, A338811.
Row sums give A028342.
Cf. A000005 (d(n)), A008298, A264428.

Programs

  • Maple
    # The function BellMatrix is defined in A264428 (with column k = 0).
    BellMatrix(n -> n!*NumberTheory:-SumOfDivisors(n+1, 0), 9);
    # Alternative:
    P := proc(n, x) option remember; if n = 0 then 1 else
    (1/n)*x*add(NumberTheory:-SumOfDivisors(n-k, 0)*P(k, x), k=0..n-1) fi end:
    Trow := n -> seq(n!*coeff(P(n, x), x, k), k = 1..n):
    seq(Trow(n), n = 0..10); # Peter Luschny, Jun 01 2022
  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, (n - 1)! * DivisorSigma[0, n]]; T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], Sum[a[j] * Binomial[n - 1, j - 1] * T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    {T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, (1-x^j+x*O(x^n))^(-u/j)), n), k)}
    
  • PARI
    a(n) = if(n<1, 0, (n-1)!*numdiv(n));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))

Formula

E.g.f.: exp(Sum_{n>0} u*d(n)*x^n/n), where d(n) is the number of divisors of n.
T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = u * (n-1)! * Sum_{k=1..n} d(k)*T(n-k; u)/(n-k)!, T(0; u) = 1.
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} d(i_j)/i_j.