A339122 Number of elements of the Rubik's Cube group of order A338883(n).
1, 170911549183, 33894540622394, 4346957030144256, 133528172514624, 140621059298755526, 153245517148800, 294998638981939200, 55333752398428896, 34178553690432192, 44590694400, 2330232827455554048, 23298374383021440, 14385471333209856, 150731886270873600
Offset: 1
Examples
a(1) = 1 because the only element of order A338883(1) = 1 is the identity element. a(73) = 51490480088678400 is the number of elements of order A338883(73) = 1260.
Links
- Ben Whitmore, Table of n, a(n) for n = 1..73
- Tomas Rokicki, SpeedSolving Puzzles Community.
Programs
-
Mathematica
pN[p_] := Total[p]!/Times@@p/Times@@Factorial[Flatten[Tally[p]][[2 ;; ;; 2]]] oddQ[p_] := OddQ[Total[p - 1]] ord[p_] := LCM @@ p oriN[p_, o_] := Module[{i, t, a = 0, ns = 0, s = 0, r}, t = ord[p]/p; For[i = 1, i <= Length[p], i++, If[Mod[t[[i]], o] == 0, a += p[[i]], ns += 1; s += p[[i]]]]; {If[a == 0, r = o^(s - ns), r = o^a o^(s - ns - 1)], o^(a + s - 1) - r}] val[p1_, o1_, p2_, o2_] := Module[{z}, z = pN[p1] pN[p2]; {{LCM[ord[p1], ord[p2]],z oriN[p1, o1][[1]] oriN[p2, o2][[1]]}, {{LCM[ord[p1] o1,ord[p2]],z oriN[p1, o1][[2]] oriN[p2, o2][[1]]}}, {{LCM[ord[p1],ord[p2] o2],z oriN[p1, o1][[1]] oriN[p2, o2][[2]]}}, {{LCM[ord[p1] o1, ord[p2] o2], z oriN[p1, o1][[2]] oriN[p2, o2][[2]] }}}] p8 = IntegerPartitions[8]; p12 = IntegerPartitions[12]; ce = Select[p8, ! oddQ[#] &]; co = Select[p8, oddQ[#] &]; ee = Select[p12, ! oddQ[#] &]; eo = Select[p12, oddQ[#] &]; res = {}; max = 0; For[i = 1, i <= Length[ce], i++, For[j = 1, j <= Length[ee], j++, AppendTo[res, val[ce[[i]], 3, ee[[j]], 2]]]] For[i = 1, i <= Length[co], i++, For[j = 1, j <= Length[eo], j++, AppendTo[res, val[co[[i]], 3, eo[[j]], 2]]]] p = Partition[res // Flatten, 2]; c // Clear; For[i = 1, i <= Length[p], i++, If [IntegerQ[c[p[[i, 1]]]], c[p[[i, 1]]] += p[[i, 2]], c[p[[i, 1]]] = p[[i, 2]]]; If[p[[i, 1]] > max, max = p[[i, 1]]]]; Select[Table[c[i], {i, 1, max}], IntegerQ[#] &] (* Herbert Kociemba, Jun 30 2022 *)
-
Python
# See post #11 in SpeedSolving Puzzles Community link.
Formula
Sum_{n=1..73} a(n) = 43252003274489856000 = A075152(3).
Extensions
a(10) corrected by Ben Whitmore, Jun 27 2022
Comments