cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338949 Number of unoriented colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.

Original entry on oeis.org

1, 18736, 249563343, 245072692820, 51780391393325, 4114243321427946, 166320182540310771, 4099464588809407728, 69243270244113372390, 868065984969662449300, 8550173137863803682016, 69007957379144017626756
Offset: 1

Views

Author

Robert A. Russell, Nov 17 2020

Keywords

Comments

Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual.

Crossrefs

Cf. A338948 (oriented), A338950 (chiral), A338951 (achiral), A338953 (edges, faces), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338965 (120-cell, 600-cell).

Programs

  • Mathematica
    Table[(96n^2+144n^3+144n^4+140n^6+300n^7+120n^8+36n^9+45n^12+84n^13+18n^14+12n^15+12n^18+n^24)/1152,{n,15}]
    LinearRecurrence[{25,-300,2300,-12650,53130,-177100,480700,-1081575,2042975,-3268760,4457400,-5200300,5200300,-4457400,3268760,-2042975,1081575,-480700,177100,-53130,12650,-2300,300,-25,1},{1,18736,249563343,245072692820,51780391393325,4114243321427946,166320182540310771,4099464588809407728,69243270244113372390,868065984969662449300,8550173137863803682016,69007957379144017626756,471182396311499869193288,2790108355121570273031710,14612960014479438426745050,68774495831757984888966336,294660451484256436406752191,1161683435155207577365494648,4252399462403852518286044405,14563558286595288907896687700,46968928774940328123724865031,143447144215320073513164583826,416884377543198363455158598933,1157756823443195554136397711600,3083952997773835021725260467500},20] (* Harvey P. Dale, Mar 24 2024 *)

Formula

a(n) = (96*n^2 + 144*n^3 + 144*n^4 + 140*n^6 + 300*n^7 + 120*n^8 + 36*n^9 + 45*n^12 + 84*n^13 + 18*n^14 + 12*n^15 + 12*n^18 + n^24) / 1152.
a(n) = 1*C(n,1) + 18734*C(n,2) + 249507138*C(n,3) + 244074551860*C(n,4) + 50557523375300*C(n,5) + 3807232072474470*C(n,6) + 138599298699649830*C(n,7) + 2881219380682352640*C(n,8) + 37996512548398853085*C(n,9) + 341001760994302265550*C(n,10) + 2186424231002014796100*C(n,11) + 10365985337974980021000*C(n,12) + 37236922591331944681200*C(n,13) + 103077062953464218018400*C(n,14) + 222282219864764987928000*C(n,15) + 375541967632270447008000*C(n,16) + 497391180994576316448000*C(n,17) + 513995707397665741248000*C(n,18) + 409785508676334510720000*C(n,19) + 247034122336026305280000*C(n,20) + 108861226736398456320000*C(n,21) + 33078014473191367680000*C(n,22) + 6193712343691192320000*C(n,23) + 538583682060103680000*C(n,24), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
a(n) = A338948(n) - A338950(n) = (A338948(n) + A338951(n)) / 2 = A338950(n) + A338951(n).