cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338959 Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.

Original entry on oeis.org

1, 24124751133507582, 883287060135783817036973460, 27692672230411020835164184856095160, 18069944152044184972628509749308321354400, 1018093811663859334508633754250963606821400320
Offset: 1

Views

Author

Robert A. Russell, Nov 17 2020

Keywords

Comments

An achiral coloring is identical to its reflection. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>60, a(n) = 0.

Crossrefs

Cf. A338956 (oriented), A338957 (unoriented), A338958 (chiral), A338955 (up to n colors), A338951 (vertices, facets), A331353 (5-cell), A331361 (8-cell edges, 16-cell faces), A331357 (16-cell edges, 8-cell faces), A338983 (120-cell, 600-cell).

Programs

  • Mathematica
    bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
    Drop[CoefficientList[bp[16]/6+bp[18]/6+bp[20]/3+bp[24]/4+bp[48]/24+bp[52]/48+bp[60]/48,x],1]

Formula

A338955(n) = Sum_{j=1..Min(n,60)} a(n) * binomial(n,j).
a(n) = 2*A338957(n) - A338956(n) = A338956(n) - 2*A338958(n) = A338957(n) - A338958(n).