1, 1, 1, 2, 3, 1, 6, 8, 6, 1, 24, 30, 20, 10, 1, 120, 144, 90, 40, 15, 1, 720, 840, 504, 210, 70, 21, 1, 5040, 5760, 3360, 1344, 420, 112, 28, 1, 40320, 45360, 25920, 10080, 3024, 756, 168, 36, 1, 362880, 403200, 226800, 86400, 25200, 6048, 1260, 240, 45, 1, 3628800, 3991680, 2217600, 831600, 237600, 55440, 11088, 1980, 330, 55, 1
Offset: 1
The triangle begins:
1: 1
2: 1 1
3: 2 3 1
4: 6 8 6 1
5: 24 30 20 10 1
6: 120 144 90 40 15 1
...
From _Peter Luschny_, Nov 19 2020: (Start):
The combinatorial interpretation is illustrated by this computation of row 6:
6! / aut([6]) = 720 / A339033(6, 1) = 720/6 = 120 = T(6, 1)
6! / aut([5, 1]) = 720 / A339033(6, 2) = 720/5 = 144 = T(6, 2)
6! / aut([4, 1, 1]) = 720 / A339033(6, 3) = 720/8 = 90 = T(6, 3)
6! / aut([3, 1, 1, 1]) = 720 / A339033(6, 4) = 720/18 = 40 = T(6, 4)
6! / aut([2, 1, 1, 1, 1]) = 720 / A339033(6, 5) = 720/48 = 15 = T(6, 5)
6! / aut([1, 1, 1, 1, 1, 1]) = 720 / A339033(6, 6) = 720/720 = 1 = T(6, 6)
-------------------------------------------------------------------------------
Sum: 410 = A121726(6)
(End)
Comments