A339067 Triangle read by rows: T(n,k) is the number of linear forests with n nodes and k rooted trees.
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 20, 30, 25, 14, 5, 1, 48, 74, 69, 44, 20, 6, 1, 115, 188, 186, 133, 70, 27, 7, 1, 286, 478, 503, 388, 230, 104, 35, 8, 1, 719, 1235, 1353, 1116, 721, 369, 147, 44, 9, 1, 1842, 3214, 3651, 3168, 2200, 1236, 560, 200, 54, 10, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 2, 1; 4, 5, 3, 1; 9, 12, 9, 4, 1; 20, 30, 25, 14, 5, 1; 48, 74, 69, 44, 20, 6, 1; 115, 188, 186, 133, 70, 27, 7, 1; 286, 478, 503, 388, 230, 104, 35, 8, 1; 719, 1235, 1353, 1116, 721, 369, 147, 44, 9, 1; ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, n, (add(add(d*b(d), d=numtheory[divisors](j))*b(n-j), j=1..n-1))/(n-1)) end: T:= proc(n, k) option remember; `if`(k=1, b(n), (t-> add(T(j, t)*T(n-j, k-t), j=1..n-1))(iquo(k, 2))) end: seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Dec 04 2020 # Using function PMatrix from A357368. Adds row and column for n, k = 0. PMatrix(10, A000081); # Peter Luschny, Oct 07 2022
-
Mathematica
b[n_] := b[n] = If[n < 2, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)]; T[n_, k_] := T[n, k] = If[k == 1, b[n], With[{t = Quotient[k, 2]}, Sum[T[j, t]*T[n - j, k - t], {j, 1, n - 1}]]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
-
PARI
\\ TreeGf is A000081. TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} ColSeq(n,k)={my(t=TreeGf(max(0,n+1-k))); Vec(t^k, -n)} M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~)) { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }
Formula
G.f. of k-th column: t(x)^k where t(x) is the g.f. of A000081.
Sum_{k=1..n} k * T(n,k) = A038002(n). - Alois P. Heinz, Dec 04 2020
Comments