cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339073 Number of strings of Hebrew letters with a gematria value equal to n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, 16336, 32656, 65280, 130496, 260864, 521473, 1042434, 2083846, 4165649, 8327214, 16646264, 33276208, 66519792, 132974368, 265818368, 531376129, 1062231296, 2123421181, 4244760561, 8485359561, 16962400080, 33908170232, 67783096912
Offset: 1

Views

Author

Daniel Sterman, Nov 22 2020

Keywords

Comments

A051596-restricted compositions of n.

Examples

			The four strings with a gematria of 3 are:
אאא (111)
אב (12)
בא (21)
ג (3)
Note: Hebrew is written right-to-left, which is why the order of the digits appears to be reversed.
		

Crossrefs

Programs

  • Maple
    g:= 1/(1-add(x^i,i=1..9)-add(x^(10*i),i=1..9)-add(x^(100*i),i=1..4)):
    S:= series(g,x,101):
    seq(coeff(S,x,n),n=1..100); # Robert Israel, Nov 25 2020
  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[x^j, {j, Join[Range[9], 10 Range[9], 100 Range[4]]}]), {x, 0, n}], {n, 100}] (* Jan Mangaldan, Nov 27 2020 *)

Formula

From Doron Zeilberger, Nov 23 2020: (Start)
G.f.: Sum(a(n)*x^n, n=0..infinity) =
1/(1-add(x^i,i=1..9)-add(x^(10*i),i=1..9)-add(x^(100*i),i=1..4))
= 1/(1-x-...-x^9 - x^10- ... -x^90 - x^100-x^200-x^300-x^400).
Asymptotics:
a(n) ~ 0.50221591060212746248115807725009875743325273964521...*(1.9990196005347377028156443471636402056440270173905...)^n
If alpha is the smallest positive root of P:=1-x-...-x^9 - x^10- ... -x^90 - x^100-x^200-x^300-x^400=0
then the above asymptotic formula is exactly -(alpha*P'(alpha))* (1/alpha)^n.
(End)

Extensions

More terms from Robert Israel, Nov 25 2020