A339073 Number of strings of Hebrew letters with a gematria value equal to n.
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, 16336, 32656, 65280, 130496, 260864, 521473, 1042434, 2083846, 4165649, 8327214, 16646264, 33276208, 66519792, 132974368, 265818368, 531376129, 1062231296, 2123421181, 4244760561, 8485359561, 16962400080, 33908170232, 67783096912
Offset: 1
Examples
The four strings with a gematria of 3 are: אאא (111) אב (12) בא (21) ג (3) Note: Hebrew is written right-to-left, which is why the order of the digits appears to be reversed.
Links
- Robert Israel, Table of n, a(n) for n = 1..3300
- Wikipedia, Gematria
Programs
-
Maple
g:= 1/(1-add(x^i,i=1..9)-add(x^(10*i),i=1..9)-add(x^(100*i),i=1..4)): S:= series(g,x,101): seq(coeff(S,x,n),n=1..100); # Robert Israel, Nov 25 2020
-
Mathematica
Table[SeriesCoefficient[1/(1 - Sum[x^j, {j, Join[Range[9], 10 Range[9], 100 Range[4]]}]), {x, 0, n}], {n, 100}] (* Jan Mangaldan, Nov 27 2020 *)
Formula
From Doron Zeilberger, Nov 23 2020: (Start)
G.f.: Sum(a(n)*x^n, n=0..infinity) =
1/(1-add(x^i,i=1..9)-add(x^(10*i),i=1..9)-add(x^(100*i),i=1..4))
= 1/(1-x-...-x^9 - x^10- ... -x^90 - x^100-x^200-x^300-x^400).
Asymptotics:
a(n) ~ 0.50221591060212746248115807725009875743325273964521...*(1.9990196005347377028156443471636402056440270173905...)^n
If alpha is the smallest positive root of P:=1-x-...-x^9 - x^10- ... -x^90 - x^100-x^200-x^300-x^400=0
then the above asymptotic formula is exactly -(alpha*P'(alpha))* (1/alpha)^n.
(End)
Extensions
More terms from Robert Israel, Nov 25 2020
Comments