A339095 Triangle read by rows: T(n,k) is the number of partitions of n with product of parts equal to k, 1 <= k <= A000792(n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 0, 3, 0, 0, 1, 3, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 0, 3, 0, 1, 1, 3, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1
Offset: 1
Examples
For n=6 the partitions and their counts for each norm are given in the table below. Relevant partition(s) | Norm | Count 1+1+1+1+1+1+1 | 1 | 1 2+1+1+1+1 | 2 | 1 3+1+1+1 | 3 | 1 4+1+1, 2+2+1+1 | 4 | 2 5+1 | 5 | 1 6, 3+2+1 | 6 | 2 4+2, 2+2+2 | 8 | 2 3+3 | 9 | 1 The number of partitions of 6 with norm value 4 are 2, expressed as T(6,4)=2. Similarly, T(6,7)=0 because there is no partition of 6 with norm 7. So the 6th row is 1, 1, 1, 2, 1, 2, 0, 2, 1. First few rows of the array are: 1; 1, 1; 1, 1, 1; 1, 1, 1, 2; 1, 1, 1, 2, 1, 1; 1, 1, 1, 2, 1, 2, 0, 2, 1; 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 2; 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 0, 3, 0, 0, 1, 3, 0, 1; ...
References
- Abhimanyu Kumar and Meenakshi Rana, On the treatment of partitions as factorization and further analysis, Journal of the Ramanujan Mathematical Society 35(3), 263-276 (2020).
Links
- Andrew V. Sills and Robert Schneider, The product of parts or "norm" of a partition, arXiv:1904.08004 [math.NT], 2019.
Programs
-
PARI
row(n) = {my(list = List()); forpart(p=n, listput(list, vecprod(Vec(p)));); my(vlist = Vec(list)); my(v = vector(vecmax(vlist))); for (i=1, #vlist, v[vlist[i]]++); v;} \\ Michel Marcus, Nov 26 2020
Formula
Let the number of partitions of n having the norm value k refer to the norm counting function T(n,k). The following properties hold true:
Max_{n=1..oo} T(n,k) = A001055(k).
Sum_{n>=1} T(n+1,k) - T(n,k) = A001055(k) - 1.
G.f.: Sum_{n>=0} Sum_{k>=1} ((q^n)/(k^s))*T(n,k) = Product_{m>=1}(1-((q^m)/(m^s)))^(-1).
Extensions
More terms from Michel Marcus, Nov 26 2020
Comments