A339148 Insulated primes (see Comments for definition).
7, 13, 23, 37, 53, 67, 89, 103, 113, 131, 139, 157, 173, 181, 193, 211, 233, 277, 293, 337, 359, 389, 409, 421, 449, 479, 491, 509, 547, 577, 607, 631, 653, 691, 709, 751, 761, 797, 811, 823, 839, 863, 887, 919, 953, 983
Offset: 1
Keywords
Examples
For the prime triplet (19,23,29), we have D(19)=2, D(23)=4, and D(29)=1. Hence, 23 is an insulated prime.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Abhimanyu Kumar and Anuraag Saxena, Insulated primes, arXiv:2011.14210 [math.NT], 2020. See also Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 602-612.
Programs
-
Mathematica
Select[Prime@ Range[2, 166], And[#2 > #1, #2 > #3] & @@ Map[Min[NextPrime[# + 1] - # - 1, # - NextPrime[# - 1, -1]] &, {NextPrime[# + 1], #, NextPrime[# - 1, -1]}] &] (* Michael De Vlieger, Mar 17 2021 *)
-
PARI
D(p)={min(nextprime(p+1)-p-1, p-precprime(p-1))} ok(p)={my(d=D(p)); d>D(nextprime(p+1)) && d>D(precprime(p-1))} forprime(p=3, 1000, if(ok(p), print1(p, ", "))) \\ Andrew Howroyd, Nov 25 2020
Formula
a(n) ~ 19.18*n^1.093 (heuristically accurate fit for n up to one million).
a(n) ~ c*n^(1+epsilon) (conjectured for some constant c,epsilon as n->oo).
Comments