A339157 Number of essentially series achiral series-parallel networks with n elements.
1, 1, 1, 3, 4, 11, 17, 46, 78, 203, 372, 946, 1830, 4561, 9207, 22609, 47166, 114514, 245154, 590345, 1289950, 3087959, 6858746, 16352074, 36800928, 87502317, 199036637, 472483088, 1084108363, 2571356964, 5942191918, 14090541799, 32754720101, 77684033014, 181473276607
Offset: 1
Keywords
Examples
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'. a(1) = 1: (o). a(2) = 1: (oo). a(3) = 1: (ooo). a(4) = 3: (oooo), ((o|o)(o|o)), (o(o|o)o). a(5) = 4: (ooooo), ((o|o)o(o|o)), (o(o|oo)o), (o(o|o|o)o). a(6) = 11: (oooooo), ((o|o)oo(o|o)), (o(o|o)(o|o)o), ((o|oo)(o|oo)), ((o|o|o)(o|o|o)), (oo(o|o)oo), ((o|o)(o|o)(o|o)), (o(o|ooo)o), (o(oo|oo)o), (o(o|o|oo)o), (o(o|o|o|o)o).
Programs
-
PARI
\\ here B(n) gives A003430 as a power series. EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p} seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, p = x + q*(1 + x + x*Ser(EulerT(Vec(p+(s-subst(p,x,x^2))/2))) - p)); Vec(p+O(x*x^n))}
Comments