cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339163 Number of compositions (ordered partitions) of n into distinct parts, the least being 2.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 2, 2, 2, 8, 8, 14, 14, 20, 44, 50, 74, 104, 128, 158, 326, 356, 524, 698, 986, 1160, 1592, 2606, 3158, 4316, 5708, 7706, 10082, 12920, 16136, 25718, 30614, 41756, 53396, 71978, 91058, 122144, 149384, 193670, 279614, 342860, 447764, 581234
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 25 2020

Keywords

Examples

			a(9) = 8 because we have [7, 2], [4, 3, 2], [4, 2, 3], [3, 4, 2], [3, 2, 4], [2, 7], [2, 4, 3] and [2, 3, 4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(n=0, p!, `if`((i-2)*(i+3)/2 `if`(n<2, 0, b(n-2$2, 1)):
    seq(a(n), n=0..55);  # Alois P. Heinz, Nov 25 2020
  • Mathematica
    nmax = 47; CoefficientList[Series[Sum[k! x^(k (k + 3)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k! * x^(k*(k + 3)/2) / Product_{j=1..k-1} (1 - x^j).