A339204 Decimal expansion of the generating constant for the Fibonacci numbers.
2, 9, 5, 6, 9, 3, 8, 8, 9, 1, 3, 7, 7, 9, 8, 8, 0, 4, 9, 8, 3, 1, 6, 9, 0, 0, 9, 7, 9, 1, 1, 2, 0, 9, 2, 7, 8, 6, 9, 9, 1, 5, 8, 2, 3, 4, 3, 9, 3, 6, 2, 3, 5, 3, 4, 5, 7, 2, 4, 4, 6, 2, 7, 2, 3, 7, 5, 2, 7, 4, 6, 4, 4, 6, 6, 8, 3, 4, 6, 7, 6, 9, 3, 0, 4, 1, 7, 5
Offset: 1
Examples
2.95693889137798804983169009791120927869915823439362...
Links
- Dylan Friedman, Juli Garbulsky, Bruno Glecer, James Grime, and Massi Tron Florentin, A Prime-Representing Constant, 2019.
Crossrefs
Programs
-
Maple
with(combinat, fibonacci): evalf(Sum((fibonacci(n) - 1)/Product(fibonacci(k), k = 2..n-1), n = 3..infinity), 120); # Vaclav Kotesovec, Nov 29 2020
-
Mathematica
Quiet[First[RealDigits[NSum[(Fibonacci[n] - 1)/Fibonorial[n - 1], {n, 3, Infinity}, Method -> {"WynnEpsilon", "ExtraTerms" -> 25}, NSumTerms -> 25, VerifyConvergence -> False, WorkingPrecision -> 105], 10, 100]], General::intnm] (* Jan Mangaldan, Nov 29 2020 *)
-
PARI
suminf(n=3, (fibonacci(n)-1)/prod(k=2, n-1, fibonacci(k))) \\ Michel Marcus, Nov 27 2020
-
Python
n, sumn, sumd, termd, f0, f1 = 0, 0, 1, 1, 1, 1 while n < 33: # enough to obtain 100 digits n, sumn, sumd, termd, f0, f1 = n+1, sumn*termd+sumd*(f0-1), sumd*termd, termd*f0, f0+f1, f0 pre, sumn, i, d = sumn//sumd, sumn%sumd, 0, "" while i < 100: dig, sumn, i = (10*sumn)//sumd, (10*sumn)%sumd, i+1 d = d+str(dig) print(str(pre)+"."+d)
Comments