cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339305 Number of Brown's diagonal Latin squares of order 2n with the first row in order.

Original entry on oeis.org

0, 2, 128, 97920, 956301312
Offset: 1

Views

Author

Eduard I. Vatutin, Dec 24 2020

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square. Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.
Plain symmetry diagonal Latin squares do not exist for odd orders, so a(2n+1)=0.

Examples

			The diagonal Latin square
.
   0 1 2 3 4 5 6 7 8 9
   1 2 3 4 0 9 5 6 7 8
   4 0 1 7 3 6 2 8 9 5
   8 7 6 5 9 0 4 3 2 1
   7 6 5 0 8 1 9 4 3 2
   9 8 7 6 5 4 3 2 1 0
   5 9 8 2 6 3 7 1 0 4
   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7
   6 4 9 1 2 7 8 0 5 3
.
is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs:
.
   0 1 2 3 4 5 6 7 8 9   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   1 2 3 4 0 9 5 6 7 8   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   4 0 1 7 3 6 2 8 9 5
   . . . . . . . . . .   8 7 6 5 9 0 4 3 2 1   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   9 8 7 6 5 4 3 2 1 0   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   5 9 8 2 6 3 7 1 0 4
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
.
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   7 6 5 0 8 1 9 4 3 2   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7   . . . . . . . . . .
   . . . . . . . . . .   6 4 9 1 2 7 8 0 5 3
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49.

Crossrefs

Formula

a(n) = A340186(n) / (2*n)!. - Eduard I. Vatutin, Jan 08 2021

Extensions

a(3) corrected by Eduard I. Vatutin and Oleg Zaikin, Dec 16 2024
a(5) added by Oleg S. Zaikin and Eduard I. Vatutin, Apr 08 2025