cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A339641 Number of main classes of Brown's diagonal Latin squares of order 2n.

Original entry on oeis.org

0, 1, 2, 173, 124528
Offset: 1

Views

Author

Eduard I. Vatutin, Dec 24 2020

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square. Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.
Plain symmetry diagonal Latin squares do not exist for odd orders, so a(2n+1)=0.

Examples

			The diagonal Latin square
.
   0 1 2 3 4 5 6 7 8 9
   1 2 3 4 0 9 5 6 7 8
   4 0 1 7 3 6 2 8 9 5
   8 7 6 5 9 0 4 3 2 1
   7 6 5 0 8 1 9 4 3 2
   9 8 7 6 5 4 3 2 1 0
   5 9 8 2 6 3 7 1 0 4
   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7
   6 4 9 1 2 7 8 0 5 3
.
is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs:
.
   0 1 2 3 4 5 6 7 8 9   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   1 2 3 4 0 9 5 6 7 8   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   4 0 1 7 3 6 2 8 9 5
   . . . . . . . . . .   8 7 6 5 9 0 4 3 2 1   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   9 8 7 6 5 4 3 2 1 0   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   5 9 8 2 6 3 7 1 0 4
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
.
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   7 6 5 0 8 1 9 4 3 2   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7   . . . . . . . . . .
   . . . . . . . . . .   6 4 9 1 2 7 8 0 5 3
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49.

Crossrefs

Extensions

a(5) added by Eduard I. Vatutin from Oleg S. Zaikin, Mar 30 2025

A340186 Number of Brown's diagonal Latin squares of order 2n.

Original entry on oeis.org

0, 48, 184320, 3948134400, 3470226200985600
Offset: 1

Views

Author

Eduard I. Vatutin, Dec 31 2020

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square. Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.
Plain symmetry diagonal Latin squares do not exist for odd orders, so a(2n+1)=0.

Examples

			The diagonal Latin square
.
   0 1 2 3 4 5 6 7 8 9
   1 2 3 4 0 9 5 6 7 8
   4 0 1 7 3 6 2 8 9 5
   8 7 6 5 9 0 4 3 2 1
   7 6 5 0 8 1 9 4 3 2
   9 8 7 6 5 4 3 2 1 0
   5 9 8 2 6 3 7 1 0 4
   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7
   6 4 9 1 2 7 8 0 5 3
.
is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs:
.
   0 1 2 3 4 5 6 7 8 9   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   1 2 3 4 0 9 5 6 7 8   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   4 0 1 7 3 6 2 8 9 5
   . . . . . . . . . .   8 7 6 5 9 0 4 3 2 1   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   9 8 7 6 5 4 3 2 1 0   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   5 9 8 2 6 3 7 1 0 4
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
.
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   7 6 5 0 8 1 9 4 3 2   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7   . . . . . . . . . .
   . . . . . . . . . .   6 4 9 1 2 7 8 0 5 3
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49.

Crossrefs

Formula

a(n) = A339305(n) * (2*n)!.

Extensions

a(3) corrected by Eduard I. Vatutin and Oleg Zaikin, Jan 12 2025
a(5) added by Eduard I. Vatutin and Oleg S. Zaikin, Apr 02 2025

A379145 Number of horizontal plane Brown's diagonal Latin squares of order 2n with the first row in order.

Original entry on oeis.org

0, 2, 64, 49152, 478150656
Offset: 1

Views

Author

Eduard I. Vatutin, Dec 16 2024

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse (horizontal plane Brown's diagonal Latin square) or vertically symmetric column-inverse diagonal Latin square (vertical plane Brown's diagonal Latin square). Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.
Also number of vertical plane Brown's diagonal Latin squares of order 2n with the first row in order.
Plain symmetry diagonal Latin squares do not exist for odd orders.

Crossrefs

Formula

a(n) = A381626(n) / (2n)!.

Extensions

a(5) added by Oleg S. Zaikin and Eduard I. Vatutin, Apr 08 2025
Showing 1-3 of 3 results.