A340186
Number of Brown's diagonal Latin squares of order 2n.
Original entry on oeis.org
0, 48, 184320, 3948134400, 3470226200985600
Offset: 1
The diagonal Latin square
.
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
4 0 1 7 3 6 2 8 9 5
8 7 6 5 9 0 4 3 2 1
7 6 5 0 8 1 9 4 3 2
9 8 7 6 5 4 3 2 1 0
5 9 8 2 6 3 7 1 0 4
3 5 0 8 7 2 1 9 4 6
2 3 4 9 1 8 0 5 6 7
6 4 9 1 2 7 8 0 5 3
.
is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs:
.
0 1 2 3 4 5 6 7 8 9 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 1 2 3 4 0 9 5 6 7 8 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 4 0 1 7 3 6 2 8 9 5
. . . . . . . . . . 8 7 6 5 9 0 4 3 2 1 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 8 7 6 5 4 3 2 1 0 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 5 9 8 2 6 3 7 1 0 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
7 6 5 0 8 1 9 4 3 2 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 3 5 0 8 7 2 1 9 4 6
2 3 4 9 1 8 0 5 6 7 . . . . . . . . . .
. . . . . . . . . . 6 4 9 1 2 7 8 0 5 3
- J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49.
A339305
Number of Brown's diagonal Latin squares of order 2n with the first row in order.
Original entry on oeis.org
0, 2, 128, 97920, 956301312
Offset: 1
The diagonal Latin square
.
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
4 0 1 7 3 6 2 8 9 5
8 7 6 5 9 0 4 3 2 1
7 6 5 0 8 1 9 4 3 2
9 8 7 6 5 4 3 2 1 0
5 9 8 2 6 3 7 1 0 4
3 5 0 8 7 2 1 9 4 6
2 3 4 9 1 8 0 5 6 7
6 4 9 1 2 7 8 0 5 3
.
is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs:
.
0 1 2 3 4 5 6 7 8 9 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 1 2 3 4 0 9 5 6 7 8 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 4 0 1 7 3 6 2 8 9 5
. . . . . . . . . . 8 7 6 5 9 0 4 3 2 1 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 8 7 6 5 4 3 2 1 0 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 5 9 8 2 6 3 7 1 0 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
7 6 5 0 8 1 9 4 3 2 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 3 5 0 8 7 2 1 9 4 6
2 3 4 9 1 8 0 5 6 7 . . . . . . . . . .
. . . . . . . . . . 6 4 9 1 2 7 8 0 5 3
- J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49.
A379145
Number of horizontal plane Brown's diagonal Latin squares of order 2n with the first row in order.
Original entry on oeis.org
0, 2, 64, 49152, 478150656
Offset: 1
A379665
Minimum number of intercalates in a Brown's diagonal Latin square of order 2n.
Original entry on oeis.org
0, 0, 12, 9, 16, 25
Offset: 0
A381971
Maximum number of diagonal transversals in a Brown's diagonal Latin square of order 2n.
Original entry on oeis.org
0, 4, 6, 120, 890
Offset: 1
A381626
Number of horizontal plane Brown's diagonal Latin squares of order 2n.
Original entry on oeis.org
0, 48, 92160, 1981808640, 1735113100492800
Offset: 1
A382024
Maximum number of transversals in a Brown's diagonal Latin square of order 2n.
Original entry on oeis.org
0, 8, 32, 384, 5504
Offset: 1
A382270
Maximum number of intercalates in a Brown's diagonal Latin square of order 2n.
Original entry on oeis.org
0, 12, 9, 112, 57
Offset: 1
A382272
Maximum number of orthogonal diagonal Latin squares with the first row in ascending order that can be orthogonal to a given Brown's diagonal Latin square of order 2n.
Original entry on oeis.org
0, 1, 0, 824, 8
Offset: 1
A382505
a(n) is the number of distinct numbers of diagonal transversals in Brown's diagonal Latin squares of order 2n.
Original entry on oeis.org
0, 1, 2, 20, 349
Offset: 1
For n=4 the number of transversals that a diagonal Latin square of order 8 may have is 0, 8, 12, 16, 18, 20, 24, 26, 28, 32, 36, 40, 44, 48, 52, 56, 64, 88, 96, or 120. Since there are 20 distinct values, a(4)=20.
Showing 1-10 of 10 results.
Comments