cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A340186 Number of Brown's diagonal Latin squares of order 2n.

Original entry on oeis.org

0, 48, 184320, 3948134400, 3470226200985600
Offset: 1

Views

Author

Eduard I. Vatutin, Dec 31 2020

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square. Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.
Plain symmetry diagonal Latin squares do not exist for odd orders, so a(2n+1)=0.

Examples

			The diagonal Latin square
.
   0 1 2 3 4 5 6 7 8 9
   1 2 3 4 0 9 5 6 7 8
   4 0 1 7 3 6 2 8 9 5
   8 7 6 5 9 0 4 3 2 1
   7 6 5 0 8 1 9 4 3 2
   9 8 7 6 5 4 3 2 1 0
   5 9 8 2 6 3 7 1 0 4
   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7
   6 4 9 1 2 7 8 0 5 3
.
is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs:
.
   0 1 2 3 4 5 6 7 8 9   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   1 2 3 4 0 9 5 6 7 8   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   4 0 1 7 3 6 2 8 9 5
   . . . . . . . . . .   8 7 6 5 9 0 4 3 2 1   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   9 8 7 6 5 4 3 2 1 0   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   5 9 8 2 6 3 7 1 0 4
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
.
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   7 6 5 0 8 1 9 4 3 2   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7   . . . . . . . . . .
   . . . . . . . . . .   6 4 9 1 2 7 8 0 5 3
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49.

Crossrefs

Formula

a(n) = A339305(n) * (2*n)!.

Extensions

a(3) corrected by Eduard I. Vatutin and Oleg Zaikin, Jan 12 2025
a(5) added by Eduard I. Vatutin and Oleg S. Zaikin, Apr 02 2025

A339305 Number of Brown's diagonal Latin squares of order 2n with the first row in order.

Original entry on oeis.org

0, 2, 128, 97920, 956301312
Offset: 1

Views

Author

Eduard I. Vatutin, Dec 24 2020

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square. Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.
Plain symmetry diagonal Latin squares do not exist for odd orders, so a(2n+1)=0.

Examples

			The diagonal Latin square
.
   0 1 2 3 4 5 6 7 8 9
   1 2 3 4 0 9 5 6 7 8
   4 0 1 7 3 6 2 8 9 5
   8 7 6 5 9 0 4 3 2 1
   7 6 5 0 8 1 9 4 3 2
   9 8 7 6 5 4 3 2 1 0
   5 9 8 2 6 3 7 1 0 4
   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7
   6 4 9 1 2 7 8 0 5 3
.
is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs:
.
   0 1 2 3 4 5 6 7 8 9   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   1 2 3 4 0 9 5 6 7 8   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   4 0 1 7 3 6 2 8 9 5
   . . . . . . . . . .   8 7 6 5 9 0 4 3 2 1   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   9 8 7 6 5 4 3 2 1 0   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   5 9 8 2 6 3 7 1 0 4
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .
.
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   7 6 5 0 8 1 9 4 3 2   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   . . . . . . . . . .
   . . . . . . . . . .   3 5 0 8 7 2 1 9 4 6
   2 3 4 9 1 8 0 5 6 7   . . . . . . . . . .
   . . . . . . . . . .   6 4 9 1 2 7 8 0 5 3
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49.

Crossrefs

Formula

a(n) = A340186(n) / (2*n)!. - Eduard I. Vatutin, Jan 08 2021

Extensions

a(3) corrected by Eduard I. Vatutin and Oleg Zaikin, Dec 16 2024
a(5) added by Oleg S. Zaikin and Eduard I. Vatutin, Apr 08 2025

A379145 Number of horizontal plane Brown's diagonal Latin squares of order 2n with the first row in order.

Original entry on oeis.org

0, 2, 64, 49152, 478150656
Offset: 1

Views

Author

Eduard I. Vatutin, Dec 16 2024

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse (horizontal plane Brown's diagonal Latin square) or vertically symmetric column-inverse diagonal Latin square (vertical plane Brown's diagonal Latin square). Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.
Also number of vertical plane Brown's diagonal Latin squares of order 2n with the first row in order.
Plain symmetry diagonal Latin squares do not exist for odd orders.

Crossrefs

Formula

a(n) = A381626(n) / (2n)!.

Extensions

a(5) added by Oleg S. Zaikin and Eduard I. Vatutin, Apr 08 2025

A379665 Minimum number of intercalates in a Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 0, 12, 9, 16, 25
Offset: 0

Views

Author

Eduard I. Vatutin, Dec 29 2024

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Plain symmetry diagonal Latin squares do not exist for odd orders.
a(6)<=36, a(7)<=49, a(8)<=64, a(9)<=81, a(10)<=100, a(11)<=121, a(12)<=144, a(13)<=201, a(14)<=252. - Updated by Eduard I. Vatutin, Mar 01 2025
Hypothesis: minimum number of intercalates in Brown's diagonal Latin squares of order N=2n is equal to (N/2)^2 for N>4 (proved for N=6 and N=8 using Brute Force and for 10<=N<=24 using heuristic methods).

Crossrefs

Extensions

a(5)=25 added by Oleg S. Zaikin and Eduard I. Vatutin, Apr 08 2025

A381971 Maximum number of diagonal transversals in a Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 4, 6, 120, 890
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 11 2025

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Brown's diagonal Latin squares are special case of plain symmetry diagonal Latin squares that are not exist for odd orders.
a(6)>=28496, a(7)>=490218, a(8)>=32172800.

Crossrefs

A381626 Number of horizontal plane Brown's diagonal Latin squares of order 2n.

Original entry on oeis.org

0, 48, 92160, 1981808640, 1735113100492800
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 02 2025

Keywords

Comments

Brown's diagonal Latin square is a horizontally symmetric row-inverse (horizontal plane Brown's diagonal Latin square) or vertically symmetric column-inverse diagonal Latin square (vertical plane Brown's diagonal Latin square). Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.
Also number of vertical plane Brown's diagonal Latin squares of order 2n with the first row in order.
Plain symmetry diagonal Latin squares do not exist for odd orders.

Crossrefs

Formula

a(n) = A379145(n) * (2n)!.

Extensions

a(5) added by Oleg S. Zaikin and Eduard I. Vatutin, Apr 08 2025

A382024 Maximum number of transversals in a Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 8, 32, 384, 5504
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 12 2025

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Brown's diagonal Latin squares are special case of plain symmetry diagonal Latin squares that do not exist for odd orders.
a(6)>=198144, a(7)>=3477504, a(8)>=244744192.

Crossrefs

A382270 Maximum number of intercalates in a Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 12, 9, 112, 57
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 20 2025

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Brown's diagonal Latin squares are special case of plain symmetry diagonal Latin squares that do not exist for odd orders.
a(6)>=252, a(7)>=385, a(8)>=960, a(9)>=329, a(10)>=356, a(11)>=497, a(12)>=1008, a(13)>=497, a(14)>=524.

Crossrefs

A382272 Maximum number of orthogonal diagonal Latin squares with the first row in ascending order that can be orthogonal to a given Brown's diagonal Latin square of order 2n.

Original entry on oeis.org

0, 1, 0, 824, 8
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 20 2025

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Brown's diagonal Latin squares are special case of plain symmetry diagonal Latin squares that do not exist for odd orders.
a(6)>=1764493860.

Crossrefs

A382505 a(n) is the number of distinct numbers of diagonal transversals in Brown's diagonal Latin squares of order 2n.

Original entry on oeis.org

0, 1, 2, 20, 349
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 29 2025

Keywords

Comments

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square (see A339641).
Brown's diagonal Latin squares are special case of plain symmetry diagonal Latin squares that do not exist for odd orders.
a(6)>=1785, a(7)>=60341, a(8)>=4151.

Examples

			For n=4 the number of transversals that a diagonal Latin square of order 8 may have is 0, 8, 12, 16, 18, 20, 24, 26, 28, 32, 36, 40, 44, 48, 52, 56, 64, 88, 96, or 120. Since there are 20 distinct values, a(4)=20.
		

Crossrefs

Showing 1-10 of 10 results.