A339315 a(n) is the smallest number k such that k^2+1 divided by its largest prime factor is equal to F(2*n-1) for n > 0, or 0 if no such k exists, where F(n) is the Fibonacci sequence.
1, 3, 8, 34, 55, 144, 610, 233, 12166, 2584, 4181, 68260, 46368, 75025, 3917414, 464656, 1346269, 16349962
Offset: 1
Examples
a(4) = 34 because 34^2 + 1 = 13*89 = 1157, and 1157/89 = 13 = A248516(34) = A001519(4). A curiosity: a(22) = 1134903170 = F(45) with F(45)^2 + 1 = F(43)*F(47) where F(43) and F(47) are prime Fibonacci numbers.
Crossrefs
Programs
-
Maple
with(numtheory):with(combinat,fibonacci): nn:=100:n0:=20: for n from 1 to n0 do: ii:=0: for m from 1 to 10^10 while(ii=0) do: x:=m^2+1:y:=factorset(x):n1:=nops(y): z:=x/y[n1]: if z = fibonacci(2*n-1) then ii:=1:printf(`%d %d \n`,n,m): else fi: od: od:
-
PARI
a(n) = {my(k=1, f=fibonacci(2*n-1)); while ((k^2+1)/vecmax(factor(k^2+1)[,1]) != f, k++); k;} \\ Michel Marcus, Nov 30 2020
Comments