A339384 a(n) = Sum_{k=1..n} (lcm(n,k)/gcd(n,k) mod n).
0, 1, 1, 3, 1, 6, 1, 11, 10, 13, 1, 28, 1, 24, 30, 51, 1, 57, 1, 89, 52, 58, 1, 120, 51, 81, 91, 166, 1, 148, 1, 211, 120, 139, 128, 307, 1, 174, 166, 357, 1, 363, 1, 404, 348, 256, 1, 544, 148, 403, 282, 565, 1, 588, 271, 714, 352, 409, 1, 822, 1, 468, 652, 915
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- Sebastian Karlsson, Formula for Prime Powers
Programs
-
Maple
a:= n-> add(irem(n*k/igcd(n, k)^2, n), k=1..n): seq(a(n), n=1..80); # Alois P. Heinz, Dec 03 2020
-
Mathematica
a[n_] := Sum[Mod[LCM[n, k]/GCD[n, k], n], {k, 1, n}]; Array[a, 100] (* Amiram Eldar, Dec 03 2020 *)
-
PARI
a(n) = sum(k=1, n, lcm(n,k)/gcd(n,k) % n); \\ Michel Marcus, Dec 02 2020
Formula
a(n) = A056789(n) - n * Sum_{k=1..n} (floor(k / gcd(n,k)^2)).
a(p^2) = A056789(p) for prime number p.
a(n) = 0 iff n = 1.
a(n) = 1 iff n is a prime.
a(p^2) = 1 + p^2(p-1)/2, if p is a prime. Sketch of proof: for an arbitrary term "lcm(n,k)/gcd(n,k) mod n", this is clearly 0 if n and k are relatively prime. If it isn't 0, then k = p*r < n for 1 <= r < p or k = n. Hence, a(p^2) = 1 + p*Sum_{r=1..p-1} r. Hence, a(p^2) = 1 + p^2*(p-1)/2.
If p is a prime then:
a(p^(2*n)) = 1 + (1/2)*p^2*(p-1)*((p^(3*n)-1)/(p^3-1)+p^(3n-2)*(p^(n-1)-1)/(p-1))
a(p^(2*n+1)) = 1 + (1/2)*p^2*(p-1)*((p^(3*n)-1)/(p^3-1)+p^(3n-1)*(p^n-1)/(p-1))
See links for proof.