cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A056789 a(n) = Sum_{k=1..n} lcm(k,n)/gcd(k,n).

Original entry on oeis.org

1, 3, 10, 19, 51, 48, 148, 147, 253, 253, 606, 352, 1015, 738, 960, 1171, 2313, 1263, 3250, 1869, 2803, 3028, 5820, 2784, 6301, 5073, 6814, 5458, 11775, 4798, 14416, 9363, 11505, 11563, 14898, 9343, 24643, 16248, 19276, 14797, 33621, 14013, 38830
Offset: 1

Views

Author

Leroy Quet, Aug 20 2000

Keywords

Comments

For prime p, a(p) = 1 + p^2*(p-1)/2.
We note lcm(k,n) = k*n iff gcd(k,n) = 1 (and in general lcm(k,n) equals k*n/gcd(k,n)), and so for these values LCM/GCD = k*n. From A023896, we have that Sum_{k=1..n-1: gcd(k,n)=1} k = n*phi(n)/2, and so Sum_{k=1..n-1: gcd(k,n)=1} k*n = n * Sum_{k=1..n-1: gcd(k,n)=1} k = n^2*phi(n)/2. As this is true, certainly Sum_{k=1..n} lcm(k,n)/gcd(k,n) > n^2*phi(n)/2. - Jon Perry, Nov 09 2014 [Edited by Petros Hadjicostas, May 27 2020]
Conjecture: for prime p, a(p^n) = 1 + (1/2)*(p - 1)*p^2*(p^(3*n) - 1)/(p^3 - 1) for n = 1,2,3,.... Cf. A339384. - Peter Bala, Dec 04 2020
The conjecture can be proven by splitting up the sum like this: a(p^n) = 1 + Sum_{1 <= r < p^n if gcd(p,r) = 1} lcm(p^n,r)/gcd(p^n,r) + Sum_{1 <= r < p^(n-1) if gcd(p,r) = 1} lcm(p^n,p*r)/gcd(p^n,p*r) + … + Sum_{1 <= r < p if gcd(p,r) = 1} lcm(p^n,p^(n-1)*r)/gcd(p^n,p^(n-1)*r) = 1 + Sum_{1 <= r < p^n if gcd(p,r) = 1} p^n*r + Sum_{1 <= r < p^(n-1) if gcd(p,r) = 1} p^(n-1)*r + … + Sum_{1 <= r < p if gcd(p,r) = 1} p*r = 1 + p^n*(1/2)*p^n*phi(p^n) + p^(n-1)*(1/2)*p^(n-1)*phi(p^(n-1)) + … + p*(1/2)*p*phi(p) = 1 + (1/2)*(p-1)*Sum_{k=1..n} p^(3k-1) = 1 + (1/2)*(p-1)*p^2*(p^(3*n)-1)/(p^3-1). - Sebastian Karlsson, Dec 07 2020

Examples

			a(6) = 6/1 + 6/2 + 6/3 + 12/2 + 30/1 + 6/6 = 48.
		

Crossrefs

Row sums of triangle in A051537.

Programs

  • Haskell
    a056789 = sum . a051537_row  -- Reinhard Zumkeller, Jul 07 2013
    
  • Mathematica
    Table[ Sum[ LCM[k, n] / GCD[k, n], {k, 1, n}], {n, 1, 50}]
    f[p_, e_] := p^2*(p-1)*(p^(3*e)-1)/(p^3-1)+1; a[1] = 1; a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 40] (* Amiram Eldar, Oct 05 2023 *)
  • PARI
    vector(50, n, sum(k=1, n, lcm(k,n)/gcd(k,n))) \\ Michel Marcus, Nov 08 2014
    
  • PARI
    a(n) = sumdiv(n, d, if(d>1, d^2*eulerphi(d)/2, 1)); \\ Daniel Suteu, Dec 10 2020

Formula

a(n) > n^2*phi(n)/2. - Thomas Ordowski, Nov 08 2014
a(n) = Sum_{k=1..n} k*n/gcd(k,n)^2. - Thomas Ordowski, Nov 08 2014
a(n) = (1/2)*Sum_{d|n} d^2*(d+1) Sum_{j|n/d} mu(j)*j^2. - Felix A. Pahl, Nov 23 2019
a(n) = 1 + Sum_{d|n, d > 1} phi(d^3)/2. - Daniel Suteu, Dec 10 2020
From Amiram Eldar, Oct 05 2023: (Start)
a(n) = (A068963(n)+1)/2.
Sum_{k=1..n} a(k) ~ (Pi^2/120) * n^4. (End)
a(n) < n^3 / 2, n > 1. - Bill McEachen, Jul 18 2024
Hence n^3/log log n << a(n) << n^3. - Charles R Greathouse IV, Jul 25 2024

Extensions

Additional comments from Amarnath Murthy, May 09 2002

A339387 a(n) = Sum_{k=1..n} (lcm(n,k)/gcd(n,k) mod k).

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 3, 1, 13, 1, 16, 1, 24, 30, 3, 1, 39, 1, 29, 31, 58, 1, 72, 1, 81, 10, 82, 1, 148, 1, 19, 120, 139, 93, 55, 1, 174, 88, 157, 1, 279, 1, 184, 168, 256, 1, 160, 1, 303, 282, 97, 1, 372, 106, 266, 181, 409, 1, 582, 1, 468, 211, 19, 285, 763, 1
Offset: 1

Views

Author

Sebastian Karlsson, Dec 02 2020

Keywords

Comments

n divides a(n) iff n divides A339384(n) iff n divides A056789(n). For proof, consider the formulas for a(n) and A339384(n).
Conjecture: If a(n) = A339384(n), then n is squarefree. This appears to be true for at least the first 2000 terms.
If n is a squarefree semiprime (A006881), then a(n) = A339384(n) iff the smaller prime factor of n divides its larger prime factor + 1.

Crossrefs

Programs

  • Maple
    a:= n-> add(irem(n*k/igcd(n, k)^2, k), k=1..n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    Table[Sum[Mod[LCM[n,k]/GCD[n,k],k],{k,n}],{n,67}] (* Stefano Spezia, Dec 02 2020 *)
  • PARI
    a(n) = sum(k=1, n, n*k/gcd(n, k)^2 % k); \\ Michel Marcus, Dec 09 2020

Formula

a(p) = a(p^2) = 1 for prime p.
If n>4, then a(n) = A056789(n) - n * Sum_{k=1..floor(n/2)} floor(n/(gcd(n,k)^2)). For proof, just rewrite "mod" in terms of the floor-function, use the formulas lcm(n,k)*gcd(n,k) = n*k and gcd(n, k) = gcd(n, n-k) and split the sum into two equal parts.
If p is a prime and p>2, then a(2*p) = A339384(2*p) = 3 + p*(p-1)/2.
If p is prime then a(p^(2*n)) = a(p^(2*n-1)) = 1 + (1/2)*p^2*(p-1)*(p^(3*n-3)-1)/(p^3-1). In particular, a(p^(2*n+2)) = a(p^(2*n+1)) = A056789(p^n). This can be proved in a very similar fashion as the corresponding formulas of A339384(p^n) and A056789(p^n).

Extensions

More terms from Stefano Spezia, Dec 02 2020
Showing 1-2 of 2 results.