cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339387 a(n) = Sum_{k=1..n} (lcm(n,k)/gcd(n,k) mod k).

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 3, 1, 13, 1, 16, 1, 24, 30, 3, 1, 39, 1, 29, 31, 58, 1, 72, 1, 81, 10, 82, 1, 148, 1, 19, 120, 139, 93, 55, 1, 174, 88, 157, 1, 279, 1, 184, 168, 256, 1, 160, 1, 303, 282, 97, 1, 372, 106, 266, 181, 409, 1, 582, 1, 468, 211, 19, 285, 763, 1
Offset: 1

Views

Author

Sebastian Karlsson, Dec 02 2020

Keywords

Comments

n divides a(n) iff n divides A339384(n) iff n divides A056789(n). For proof, consider the formulas for a(n) and A339384(n).
Conjecture: If a(n) = A339384(n), then n is squarefree. This appears to be true for at least the first 2000 terms.
If n is a squarefree semiprime (A006881), then a(n) = A339384(n) iff the smaller prime factor of n divides its larger prime factor + 1.

Crossrefs

Programs

  • Maple
    a:= n-> add(irem(n*k/igcd(n, k)^2, k), k=1..n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    Table[Sum[Mod[LCM[n,k]/GCD[n,k],k],{k,n}],{n,67}] (* Stefano Spezia, Dec 02 2020 *)
  • PARI
    a(n) = sum(k=1, n, n*k/gcd(n, k)^2 % k); \\ Michel Marcus, Dec 09 2020

Formula

a(p) = a(p^2) = 1 for prime p.
If n>4, then a(n) = A056789(n) - n * Sum_{k=1..floor(n/2)} floor(n/(gcd(n,k)^2)). For proof, just rewrite "mod" in terms of the floor-function, use the formulas lcm(n,k)*gcd(n,k) = n*k and gcd(n, k) = gcd(n, n-k) and split the sum into two equal parts.
If p is a prime and p>2, then a(2*p) = A339384(2*p) = 3 + p*(p-1)/2.
If p is prime then a(p^(2*n)) = a(p^(2*n-1)) = 1 + (1/2)*p^2*(p-1)*(p^(3*n-3)-1)/(p^3-1). In particular, a(p^(2*n+2)) = a(p^(2*n+1)) = A056789(p^n). This can be proved in a very similar fashion as the corresponding formulas of A339384(p^n) and A056789(p^n).

Extensions

More terms from Stefano Spezia, Dec 02 2020