A339387 a(n) = Sum_{k=1..n} (lcm(n,k)/gcd(n,k) mod k).
0, 1, 1, 1, 1, 6, 1, 3, 1, 13, 1, 16, 1, 24, 30, 3, 1, 39, 1, 29, 31, 58, 1, 72, 1, 81, 10, 82, 1, 148, 1, 19, 120, 139, 93, 55, 1, 174, 88, 157, 1, 279, 1, 184, 168, 256, 1, 160, 1, 303, 282, 97, 1, 372, 106, 266, 181, 409, 1, 582, 1, 468, 211, 19, 285, 763, 1
Offset: 1
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> add(irem(n*k/igcd(n, k)^2, k), k=1..n): seq(a(n), n=1..80); # Alois P. Heinz, Dec 03 2020
-
Mathematica
Table[Sum[Mod[LCM[n,k]/GCD[n,k],k],{k,n}],{n,67}] (* Stefano Spezia, Dec 02 2020 *)
-
PARI
a(n) = sum(k=1, n, n*k/gcd(n, k)^2 % k); \\ Michel Marcus, Dec 09 2020
Formula
a(p) = a(p^2) = 1 for prime p.
If n>4, then a(n) = A056789(n) - n * Sum_{k=1..floor(n/2)} floor(n/(gcd(n,k)^2)). For proof, just rewrite "mod" in terms of the floor-function, use the formulas lcm(n,k)*gcd(n,k) = n*k and gcd(n, k) = gcd(n, n-k) and split the sum into two equal parts.
If p is a prime and p>2, then a(2*p) = A339384(2*p) = 3 + p*(p-1)/2.
Extensions
More terms from Stefano Spezia, Dec 02 2020
Comments