cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339443 Pairwise listing of the partitions of k into two parts (s,t), with 0 < t <= s ordered by decreasing values of s and where k = 2,3,... .

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 3, 2, 5, 1, 4, 2, 3, 3, 6, 1, 5, 2, 4, 3, 7, 1, 6, 2, 5, 3, 4, 4, 8, 1, 7, 2, 6, 3, 5, 4, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 6, 12, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 13, 1, 12, 2, 11
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 05 2020

Keywords

Examples

			                                                                     [9,1]
                                                     [7,1]   [8,1]   [8,2]
                                     [5,1]   [6,1]   [6,2]   [7,2]   [7,3]
                     [3,1]   [4,1]   [4,2]   [5,2]   [5,3]   [6,3]   [6,4]
     [1,1]   [2,1]   [2,2]   [3,2]   [3,3]   [4,3]   [4,4]   [5,4]   [5,5]
   k   2       3       4       5       6       7       8       9      10
  --------------------------------------------------------------------------
   k   Nonincreasing partitions of k
  --------------------------------------------------------------------------
   2   1,1
   3   2,1
   4   3,1,2,2
   5   4,1,3,2
   6   5,1,4,2,3,3
   7   6,1,5,2,4,3
   8   7,1,6,2,5,3,4,4
   9   8,1,7,2,6,3,5,4
  10   9,1,8,2,7,3,6,4,5,5
  ...
		

Crossrefs

Bisections: A199474, A122197.

Programs

  • Mathematica
    Table[(1 - (-1)^n) (1 + Floor[Sqrt[2 n - 1]])/2 - (((-1)^n - 2 n - 1)/2 + 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2, {n, 100}]

Formula

a(n) = (1-(-1)^n)*(1+floor(sqrt(2*n-1)))/2-(((-1)^n-2*n-1)/2 + 2*Sum_{k=1..-1+floor(sqrt(2*n-2-(-1)^n))} floor((k+1)/2))*(-1)^n/2.
a(n) = A339399(A103889(n)). - Wesley Ivan Hurt, May 09 2021