A340205
Number of primes in A339443 among the values of A339443(k) for k = 1..n.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 9, 10, 10, 10, 11, 12, 12, 13, 14, 14, 14, 15, 16, 17, 17, 17, 17, 17, 18, 19, 19, 20, 21, 21, 21, 21, 21, 22, 23, 24, 24, 24, 25, 26, 26, 26, 26, 27, 27, 28, 29, 29, 29, 30, 31, 31, 31, 32, 32, 33, 33, 33, 34, 35, 35, 35, 35, 35
Offset: 1
a(12) = 6; The first 12 values of A339443 are 1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 3, 2 (of which, 6 are prime).
Original entry on oeis.org
1, 2, 5, 11, 24, 52, 110, 227, 463, 947, 1956, 4073, 8501, 17695, 36654, 75585, 155396, 318958, 654018, 1339502, 2738706, 5586721, 11368212, 23081884, 46793949, 94805057, 192116284, 389627700, 791036691, 1607529164, 3268715492, 6647212980, 13512728367, 27449702179
Offset: 0
-
a[n_] := (1 - (-1)^n) (1 + Floor[Sqrt[2 n - 1]])/2 - (((-1)^n - 2 n - 1)/2 + 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2; Table[Sum[Binomial[n, i]*a[n - i + 1], {i, 0, n}], {n, 0, 40}]
A339399
Pairwise listing of the partitions of k into two parts (s,t), with 0 < s <= t ordered by increasing values of s and where k = 2,3,... .
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 2, 3, 1, 5, 2, 4, 3, 3, 1, 6, 2, 5, 3, 4, 1, 7, 2, 6, 3, 5, 4, 4, 1, 8, 2, 7, 3, 6, 4, 5, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 6, 1, 12, 2, 11, 3, 10, 4, 9, 5, 8, 6, 7, 1, 13, 2, 12, 3, 11
Offset: 1
[1,9]
[1,7] [1,8] [2,8]
[1,5] [1,6] [2,6] [2,7] [3,7]
[1,3] [1,4] [2,4] [2,5] [3,5] [3,6] [4,6]
[1,1] [1,2] [2,2] [2,3] [3,3] [3,4] [4,4] [4,5] [5,5]
k 2 3 4 5 6 7 8 9 10
--------------------------------------------------------------------------
k Nondecreasing partitions of k
--------------------------------------------------------------------------
2 1,1
3 1,2
4 1,3,2,2
5 1,4,2,3
6 1,5,2,4,3,3
7 1,6,2,5,3,4
8 1,7,2,6,3,5,4,4
9 1,8,2,7,3,6,4,5
10 1,9,2,8,3,7,4,6,5,5
...
-
t[n_] := Flatten[Reverse /@ IntegerPartitions[n, {2}]]; Array[t, 14, 2] // Flatten (* Amiram Eldar, Dec 03 2020 *)
Table[(1 + (-1)^n) (1 + Floor[Sqrt[2 n - 1 - (-1)^n]])/2 - ((2 n + 1 - (-1)^n)/2 - 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2, {n, 100}] (* Wesley Ivan Hurt, Dec 04 2020 *)
-
row(n) = vector(n\2, i, [i, n-i]);
tabf(nn) = for (n=2, nn, print(row(n))); \\ Michel Marcus, Dec 03 2020
A342769
Pairwise listing of the partitions of 2k into two parts, (s,t), with 0 < s <= t ordered by increasing values of s and where k = 1,2,... .
Original entry on oeis.org
1, 1, 1, 3, 2, 2, 1, 5, 2, 4, 3, 3, 1, 7, 2, 6, 3, 5, 4, 4, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 6, 1, 13, 2, 12, 3, 11, 4, 10, 5, 9, 6, 8, 7, 7, 1, 15, 2, 14, 3, 13, 4, 12, 5, 11, 6, 10, 7, 9, 8, 8, 1, 17, 2, 16, 3, 15, 4, 14, 5, 13, 6, 12, 7
Offset: 1
[1,13]
[1,11] [2,12]
[1,9] [2,10] [3,11]
[1,7] [2,8] [3, 9] [4,10]
[1,5] [2,6] [3,7] [4, 8] [5, 9]
[1,3] [2,4] [3,5] [4,6] [5, 7] [6, 8]
[1,1] [2,2] [3,3] [4,4] [5,5] [6, 6] [7, 7]
2k 2 4 6 8 10 12 14
--------------------------------------------------------------------------
2k Nondecreasing partitions of 2k
--------------------------------------------------------------------------
2 1,1
4 1,3,2,2
6 1,5,2,4,3,3
8 1,7,2,6,3,5,4,4
10 1,9,2,8,3,7,4,6,5,5
12 1,11,2,10,3,9,4,8,5,7,6,6
14 1,13,2,12,3,11,4,10,5,9,6,8,7,7
...
A342913
Pairwise listing of the partitions of 2k into two parts, (s,t), with 0 < t <= s ordered by decreasing values of s and where k = 1,2,... .
Original entry on oeis.org
1, 1, 3, 1, 2, 2, 5, 1, 4, 2, 3, 3, 7, 1, 6, 2, 5, 3, 4, 4, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 6, 13, 1, 12, 2, 11, 3, 10, 4, 9, 5, 8, 6, 7, 7, 15, 1, 14, 2, 13, 3, 12, 4, 11, 5, 10, 6, 9, 7, 8, 8, 17, 1, 16, 2, 15, 3, 14, 4, 13, 5, 12, 6, 11, 7
Offset: 1
[13,1]
[11,1] [12,2]
[9,1] [10,2] [11,3]
[7,1] [8,2] [9, 3] [10,4]
[5,1] [6,2] [7,3] [8, 4] [9, 5]
[3,1] [4,2] [5,3] [6,4] [7, 5] [8, 6]
[1,1] [2,2] [3,3] [4,4] [5,5] [6, 6] [7, 7]
2k 2 4 6 8 10 12 14
--------------------------------------------------------------------------
2k Decreasing partitions of 2k
--------------------------------------------------------------------------
2 1,1
4 3,1,2,2
6 5,1,4,2,3,3
8 7,1,6,2,5,3,4,4
10 9,1,8,2,7,3,6,4,5,5
12 11,1,10,2,9,3,8,4,7,5,6,6
14 13,1,12,2,11,3,10,4,9,5,8,6,7,7
...
A102515
a(n) = floor(1 + sqrt(2n + 1)).
Original entry on oeis.org
2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Offset: 0
-
Table[Floor[1+Sqrt[2n+1]],{n,0,100}] (* Harvey P. Dale, Feb 28 2015 *)
Original entry on oeis.org
1, 2, 3, 5, 6, 9, 11, 13, 14, 18, 20, 23, 24, 29, 31, 35, 38, 41, 42, 48, 50, 55, 58, 62, 63, 70, 72, 78, 81, 86, 90, 94, 95, 103, 105, 112, 115, 121, 125, 130, 131, 140, 142, 150, 153, 160, 164, 170, 175, 180, 181, 191, 193, 202, 205, 213, 217, 224, 229, 235, 236, 247, 249
Offset: 1
-
Table[Sum[((1 + (-1)^k) (1 + Floor[Sqrt[2 k - 1 - (-1)^k]])/2 - ((2 k + 1 - (-1)^k)/2 - 2 Sum[Floor[(i + 1)/2], {i, -1 + Floor[Sqrt[2 k - 2 - (-1)^k]]}]) (-1)^k/2), {k, n}], {n, 100}]
Showing 1-7 of 7 results.
Comments