cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A340205 Number of primes in A339443 among the values of A339443(k) for k = 1..n.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 9, 10, 10, 10, 11, 12, 12, 13, 14, 14, 14, 15, 16, 17, 17, 17, 17, 17, 18, 19, 19, 20, 21, 21, 21, 21, 21, 22, 23, 24, 24, 24, 25, 26, 26, 26, 26, 27, 27, 28, 29, 29, 29, 30, 31, 31, 31, 32, 32, 33, 33, 33, 34, 35, 35, 35, 35, 35
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 31 2020

Keywords

Examples

			a(12) = 6; The first 12 values of A339443 are 1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 3, 2 (of which, 6 are prime).
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} pi(c(k)) - pi(c(k)-1), where c = A339443.

A350326 Binomial transform of A339443(n).

Original entry on oeis.org

1, 2, 5, 11, 24, 52, 110, 227, 463, 947, 1956, 4073, 8501, 17695, 36654, 75585, 155396, 318958, 654018, 1339502, 2738706, 5586721, 11368212, 23081884, 46793949, 94805057, 192116284, 389627700, 791036691, 1607529164, 3268715492, 6647212980, 13512728367, 27449702179
Offset: 0

Views

Author

Wesley Ivan Hurt, Dec 24 2021

Keywords

Crossrefs

Cf. A339443.

Programs

  • Mathematica
    a[n_] := (1 - (-1)^n) (1 + Floor[Sqrt[2 n - 1]])/2 - (((-1)^n - 2 n - 1)/2 + 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2; Table[Sum[Binomial[n, i]*a[n - i + 1], {i, 0, n}], {n, 0, 40}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A339443(n-k+1).

A339399 Pairwise listing of the partitions of k into two parts (s,t), with 0 < s <= t ordered by increasing values of s and where k = 2,3,... .

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 2, 3, 1, 5, 2, 4, 3, 3, 1, 6, 2, 5, 3, 4, 1, 7, 2, 6, 3, 5, 4, 4, 1, 8, 2, 7, 3, 6, 4, 5, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 6, 1, 12, 2, 11, 3, 10, 4, 9, 5, 8, 6, 7, 1, 13, 2, 12, 3, 11
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 02 2020

Keywords

Comments

a(n-1) and a(n) are the lesser and greater of a twin prime pair if and only if a(n) = a(n-1) + 2 where a(n-1) and a(n) are prime.

Examples

			                                                                     [1,9]
                                                     [1,7]   [1,8]   [2,8]
                                     [1,5]   [1,6]   [2,6]   [2,7]   [3,7]
                     [1,3]   [1,4]   [2,4]   [2,5]   [3,5]   [3,6]   [4,6]
     [1,1]   [1,2]   [2,2]   [2,3]   [3,3]   [3,4]   [4,4]   [4,5]   [5,5]
   k   2       3       4       5       6       7       8       9      10
  --------------------------------------------------------------------------
   k   Nondecreasing partitions of k
  --------------------------------------------------------------------------
   2   1,1
   3   1,2
   4   1,3,2,2
   5   1,4,2,3
   6   1,5,2,4,3,3
   7   1,6,2,5,3,4
   8   1,7,2,6,3,5,4,4
   9   1,8,2,7,3,6,4,5
  10   1,9,2,8,3,7,4,6,5,5
  ...
		

Crossrefs

Bisections: A122197 (odd), A199474 (even).

Programs

  • Mathematica
    t[n_] := Flatten[Reverse /@ IntegerPartitions[n, {2}]]; Array[t, 14, 2] // Flatten (* Amiram Eldar, Dec 03 2020 *)
    Table[(1 + (-1)^n) (1 + Floor[Sqrt[2 n - 1 - (-1)^n]])/2 - ((2 n + 1 - (-1)^n)/2 - 2 Sum[Floor[(k + 1)/2], {k, -1 + Floor[Sqrt[2 n - 2 - (-1)^n]]}]) (-1)^n/2, {n, 100}] (* Wesley Ivan Hurt, Dec 04 2020 *)
  • PARI
    row(n) = vector(n\2, i, [i, n-i]);
    tabf(nn) = for (n=2, nn, print(row(n))); \\ Michel Marcus, Dec 03 2020

Formula

a(n) = (1+(-1)^n)*(1+floor(sqrt(2*n-1-(-1)^n)))/2-((2*n+1-(-1)^n)/2-2 *Sum_{k=1..floor(sqrt(2*n-2-(-1)^n)-1)} floor((k+1)/2))*(-1)^n/2.
a(n) = A339443(A103889(n)). - Wesley Ivan Hurt, May 09 2021

A342769 Pairwise listing of the partitions of 2k into two parts, (s,t), with 0 < s <= t ordered by increasing values of s and where k = 1,2,... .

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 1, 5, 2, 4, 3, 3, 1, 7, 2, 6, 3, 5, 4, 4, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 6, 1, 13, 2, 12, 3, 11, 4, 10, 5, 9, 6, 8, 7, 7, 1, 15, 2, 14, 3, 13, 4, 12, 5, 11, 6, 10, 7, 9, 8, 8, 1, 17, 2, 16, 3, 15, 4, 14, 5, 13, 6, 12, 7
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 21 2021

Keywords

Examples

			                                                        [1,13]
                                               [1,11]   [2,12]
                                       [1,9]   [2,10]   [3,11]
                               [1,7]   [2,8]   [3, 9]   [4,10]
                       [1,5]   [2,6]   [3,7]   [4, 8]   [5, 9]
               [1,3]   [2,4]   [3,5]   [4,6]   [5, 7]   [6, 8]
       [1,1]   [2,2]   [3,3]   [4,4]   [5,5]   [6, 6]   [7, 7]
   2k    2       4       6       8       10      12       14
  --------------------------------------------------------------------------
   2k   Nondecreasing partitions of 2k
  --------------------------------------------------------------------------
   2   1,1
   4   1,3,2,2
   6   1,5,2,4,3,3
   8   1,7,2,6,3,5,4,4
  10   1,9,2,8,3,7,4,6,5,5
  12   1,11,2,10,3,9,4,8,5,7,6,6
  14   1,13,2,12,3,11,4,10,5,9,6,8,7,7
  ...
		

Crossrefs

Formula

a(n) = k + (k^2 + k - m)*(-1)^n / 2, where k = round(sqrt(m)) and m = 2*floor((n+1)/2).
a(n) = A342913(A103889(n)). - Wesley Ivan Hurt, May 09 2021

A342913 Pairwise listing of the partitions of 2k into two parts, (s,t), with 0 < t <= s ordered by decreasing values of s and where k = 1,2,... .

Original entry on oeis.org

1, 1, 3, 1, 2, 2, 5, 1, 4, 2, 3, 3, 7, 1, 6, 2, 5, 3, 4, 4, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 6, 13, 1, 12, 2, 11, 3, 10, 4, 9, 5, 8, 6, 7, 7, 15, 1, 14, 2, 13, 3, 12, 4, 11, 5, 10, 6, 9, 7, 8, 8, 17, 1, 16, 2, 15, 3, 14, 4, 13, 5, 12, 6, 11, 7
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 28 2021

Keywords

Examples

			                                                        [13,1]
                                               [11,1]   [12,2]
                                       [9,1]   [10,2]   [11,3]
                               [7,1]   [8,2]   [9, 3]   [10,4]
                       [5,1]   [6,2]   [7,3]   [8, 4]   [9, 5]
               [3,1]   [4,2]   [5,3]   [6,4]   [7, 5]   [8, 6]
       [1,1]   [2,2]   [3,3]   [4,4]   [5,5]   [6, 6]   [7, 7]
   2k    2       4       6       8       10      12       14
  --------------------------------------------------------------------------
   2k   Decreasing partitions of 2k
  --------------------------------------------------------------------------
   2   1,1
   4   3,1,2,2
   6   5,1,4,2,3,3
   8   7,1,6,2,5,3,4,4
  10   9,1,8,2,7,3,6,4,5,5
  12   11,1,10,2,9,3,8,4,7,5,6,6
  14   13,1,12,2,11,3,10,4,9,5,8,6,7,7
  ...
		

Crossrefs

Formula

a(n) = k - (k^2 + k - m)*(-1)^n / 2, where k = round(sqrt(m)) and m = 2*floor((n+1-(-1)^n)/2).
a(n) = A342769(A103889(n)).

A102515 a(n) = floor(1 + sqrt(2n + 1)).

Original entry on oeis.org

2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Offset: 0

Views

Author

Giovanni Teofilatto, Mar 16 2005

Keywords

Comments

The first occurrence of k appears at floor((k-1)^2/2), beginning with k=3. - Robert G. Wilson v, Mar 01 2015
If the sign inside the sqrt() is changed from "+" to "-", then the offset must be changed from 0 to 1 in order for the terms in the data to remain the same. - Robert G. Wilson v, Mar 01 2015

Programs

  • Mathematica
    Table[Floor[1+Sqrt[2n+1]],{n,0,100}] (* Harvey P. Dale, Feb 28 2015 *)

Formula

With offset 1, a(n) = A339399(n) + A339443(n). - Wesley Ivan Hurt, Dec 31 2020

Extensions

Definition corrected by Olivier Gérard & Harvey P. Dale, Feb 28 2015
Offset corrected by Robert G. Wilson v, Mar 01 2015

A349523 a(n) = Sum_{k=1..n} A339399(k).

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 11, 13, 14, 18, 20, 23, 24, 29, 31, 35, 38, 41, 42, 48, 50, 55, 58, 62, 63, 70, 72, 78, 81, 86, 90, 94, 95, 103, 105, 112, 115, 121, 125, 130, 131, 140, 142, 150, 153, 160, 164, 170, 175, 180, 181, 191, 193, 202, 205, 213, 217, 224, 229, 235, 236, 247, 249
Offset: 1

Views

Author

Wesley Ivan Hurt, Nov 20 2021

Keywords

Comments

Partial sums of A339399.

Crossrefs

Programs

  • Mathematica
    Table[Sum[((1 + (-1)^k) (1 + Floor[Sqrt[2 k - 1 - (-1)^k]])/2 - ((2 k + 1 - (-1)^k)/2 - 2 Sum[Floor[(i + 1)/2], {i, -1 + Floor[Sqrt[2 k - 2 - (-1)^k]]}]) (-1)^k/2), {k, n}], {n, 100}]

Formula

a(n) = Sum_{i=1..n} ((1+(-1)^i)*(1+floor(sqrt(2*i-1-(-1)^i)))/2-((2*i+1-(-1)^i)/2-2 *Sum_{k=1..floor(sqrt(2*i-2-(-1)^i)-1)} floor((k+1)/2))*(-1)^i/2).
a(n) = Sum_{k=1..n} A339443(A103889(k)).
Showing 1-7 of 7 results.