A339454 Number of subsets of {1..n} whose root mean square is an integer.
1, 2, 3, 4, 5, 6, 9, 10, 15, 20, 29, 52, 87, 166, 311, 538, 943, 1682, 2915, 5054, 8905, 15904, 28533, 51826, 95191, 175402, 325777, 607542, 1134191, 2128922, 3986433, 7485522, 14065135, 26446388, 49796025, 93920770, 177470237, 335780796, 636883269, 1209603646
Offset: 1
Keywords
Examples
a(9) = 15 subsets: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {1, 7}, {1, 5, 7}, {1, 3, 5, 8, 9}, {3, 4, 5, 7, 9}, {1, 3, 5, 6, 8, 9} and {3, 4, 5, 6, 7, 9}.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..100
- Eric W. Weisstein's World of Mathematics, Root-Mean-Square
Programs
-
Python
from functools import lru_cache from sympy.ntheory.primetest import is_square def cond(sos, c): return c > 0 and sos%c == 0 and is_square(sos//c) @lru_cache(maxsize=None) def b(n, sos, c): if n == 0: return int(cond(sos, c)) return b(n-1, sos, c) + b(n-1, sos+n*n, c+1) a = lambda n: b(n, 0, 0) print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Oct 06 2022
Formula
Extensions
a(23)-a(40) from Alois P. Heinz, Dec 05 2020