cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339458 Continued fraction expansion of the smallest constant d such that the numbers floor(2^(n^d)) are distinct primes for all n >= 1.

Original entry on oeis.org

1, 1, 1, 63, 7, 3, 2, 2, 1, 1, 1, 250, 2, 1, 2, 1, 2, 3, 1, 4, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 6, 7, 1, 1, 1, 6, 1, 1, 9, 9, 2, 1, 6, 2, 5, 1, 25, 1, 1, 1, 2, 18, 1, 3, 5, 1, 1, 5, 1, 3, 1, 1, 4, 1, 1, 3, 2, 2, 3, 40, 2, 3, 8, 2, 2, 25, 1, 5, 2, 1, 1, 3, 2, 2, 1, 10, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 2, 420, 2, 2, 1
Offset: 1

Views

Author

Bernard Montaron, Dec 06 2020

Keywords

Examples

			1+1/(1+1/(1+1/(63+1/(7+1/(3+1/(2+1/(2+1/(1+1/(1+1/(1+1/(250] = 22739482/15120055 = 1.503928524069522...
The constant is equal to d=1.503928524069520633527689067897583199190738849581138429002999...
		

Crossrefs

Programs

  • PARI
    A339458(n=63, prec=200)={
      my(curprec=default(realprecision));
      default(realprecision, max(prec,curprec));
      my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
      for(j=1, n-1,
        b=floor(c^(j^d));
        until(ok,
          p=smpr(b);
          ok = 1;
          listput(a,p,j);
          if(p!=b,
             d=log(log(p)/log(c))/log(j);
             for(k=1,j-2,
                 b=floor(c^(k^d));
                 if(b!=a[k],
                    ok=0;
                    j=k;
                    break;
                   );
                );
            );
        );
      );
      default(realprecision, curprec);
      return(contfrac(d));
    } \\ François Marques, Dec 08 2020