A339458 Continued fraction expansion of the smallest constant d such that the numbers floor(2^(n^d)) are distinct primes for all n >= 1.
1, 1, 1, 63, 7, 3, 2, 2, 1, 1, 1, 250, 2, 1, 2, 1, 2, 3, 1, 4, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 6, 7, 1, 1, 1, 6, 1, 1, 9, 9, 2, 1, 6, 2, 5, 1, 25, 1, 1, 1, 2, 18, 1, 3, 5, 1, 1, 5, 1, 3, 1, 1, 4, 1, 1, 3, 2, 2, 3, 40, 2, 3, 8, 2, 2, 25, 1, 5, 2, 1, 1, 3, 2, 2, 1, 10, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 2, 420, 2, 2, 1
Offset: 1
Examples
1+1/(1+1/(1+1/(63+1/(7+1/(3+1/(2+1/(2+1/(1+1/(1+1/(1+1/(250] = 22739482/15120055 = 1.503928524069522... The constant is equal to d=1.503928524069520633527689067897583199190738849581138429002999...
Programs
-
PARI
A339458(n=63, prec=200)={ my(curprec=default(realprecision)); default(realprecision, max(prec,curprec)); my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); for(j=1, n-1, b=floor(c^(j^d)); until(ok, p=smpr(b); ok = 1; listput(a,p,j); if(p!=b, d=log(log(p)/log(c))/log(j); for(k=1,j-2, b=floor(c^(k^d)); if(b!=a[k], ok=0; j=k; break; ); ); ); ); ); default(realprecision, curprec); return(contfrac(d)); } \\ François Marques, Dec 08 2020