A339457 Decimal expansion of the smallest positive number d such that numbers of the sequence floor(2^(n^d)) are distinct primes for all n>=1.
1, 5, 0, 3, 9, 2, 8, 5, 2, 4, 0, 6, 9, 5, 2, 0, 6, 3, 3, 5, 2, 7, 6, 8, 9, 0, 6, 7, 8, 9, 7, 5, 8, 3, 1, 9, 9, 1, 9, 0, 7, 3, 8, 8, 4, 9, 5, 8, 1, 1, 3, 8, 4, 2, 9, 0, 0, 2, 9, 9, 9, 3, 5, 0, 6, 5, 7, 6, 5, 9, 5, 4, 7, 5, 6, 1, 6, 3, 0, 5, 7, 6, 4, 3, 1, 7, 1, 0, 1, 8, 9, 0, 8, 0, 8, 8, 6, 5, 2, 2, 4, 6, 8, 7, 4, 0, 1, 3, 0
Offset: 1
A339459 Prime numbers a(n) = floor(2^(n^d)) for all n>=1 where d=1.5039285240... is the constant defined at A339457.
2, 7, 37, 263, 2437, 28541, 414893, 7368913, 157859813, 4035572951, 122006926709, 4328504865941, 178988464493359, 8575347401843113, 473485756611713633, 29985730185033339911, 2168685169398896331137, 178419507110725228550743
Offset: 1
Keywords
Comments
Assuming Cramer's conjecture on prime gaps is true, it can be proved that there exists at least one constant d such that all terms of the sequence are primes. The constant giving the smallest growth rate is d=1.503928524069520633527689067897583199190738...
Algorithm to generate the smallest constant d and the associated prime number sequence a(n) = floor(2^(n^d)).
0. n=1, a(1)=2, d=1
1. n=n+1
2. b=floor(2^(n^d))
3. p=smpr(b) (smallest prime >= b)
4. If p=b, then a(n)=p, go to 1.
5. d=log(log(p)/log(2))/log(n)
6. a(n)=p
7. k=1
8. b=floor(2^(k^d))
9. If b<>a(k) and b not prime, then p=smpr(b), n=k, go to 5.
10. If b is prime then a(k)=b
11. If k
12. go to 1.
112 decimals of d are sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=50 has 109 decimal digits.
Examples
This example illustrates the importance of doing full precision calculations: a(19) = floor(2^(19^d)) = floor(2^83.7826351429215150692195114432) = 16637432012996855576590853. Here, the precision required on the exponent of 2 is 28 decimals in order to obtain the correct value for a(19). And the precision required keeps increasing with the index value n.
Links
- Bernard Montaron, Exponential prime sequences, arXiv:2011.14653 [math.NT], 2020.
Programs
-
PARI
A339459(n=30, prec=100) = { \\ if precision is large enough, returns the list of first n terms of the sequence my(curprec=default(realprecision)); default(realprecision, max(prec,curprec)); my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); for(j=1, n-1, b=floor(c^(j^d)); until(ok, p=smpr(b); ok = 1; listput(a,p,j); if(p!=b, d=log(log(p)/log(c))/log(j); for(k=1,j-2, b=floor(c^(k^d)); if(b!=a[k], ok=0; j=k; break; ); ); ); ); ); default(realprecision, curprec); return(a); } \\ François Marques, Dec 08 2020
Formula
a(n) = floor(2^(n^d)) where d=1.5039285240...
Comments
Examples
Links
Crossrefs
Programs
PARI