cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339457 Decimal expansion of the smallest positive number d such that numbers of the sequence floor(2^(n^d)) are distinct primes for all n>=1.

Original entry on oeis.org

1, 5, 0, 3, 9, 2, 8, 5, 2, 4, 0, 6, 9, 5, 2, 0, 6, 3, 3, 5, 2, 7, 6, 8, 9, 0, 6, 7, 8, 9, 7, 5, 8, 3, 1, 9, 9, 1, 9, 0, 7, 3, 8, 8, 4, 9, 5, 8, 1, 1, 3, 8, 4, 2, 9, 0, 0, 2, 9, 9, 9, 3, 5, 0, 6, 5, 7, 6, 5, 9, 5, 4, 7, 5, 6, 1, 6, 3, 0, 5, 7, 6, 4, 3, 1, 7, 1, 0, 1, 8, 9, 0, 8, 0, 8, 8, 6, 5, 2, 2, 4, 6, 8, 7, 4, 0, 1, 3, 0
Offset: 1

Views

Author

Bernard Montaron, Dec 06 2020

Keywords

Comments

Assuming Cramer's conjecture on prime gaps, it can be proved that there exists at least one constant d such that all floor(2^(n^d)) are primes for n>=1 as large as required. The constant giving the smallest growth rate is d=1.503928524069520633527689067897583199190738...
Algorithm to generate the smallest constant d and the associated prime number sequence a(n)=floor(2^(n^d)).
0. n=1, a(1)=2, d=1
1. n=n+1
2. b=floor(2^(n^d))
3. p=smpr(b) (smallest prime >= b)
4. If p=b, then a(n)=p, go to 1.
5. d=log(log(p)/log(2))/log(n)
6. a(n)=p
7. k=1
8. b=floor(2^(k^d))
9. If b<>a(k) and b not prime, then p=smpr(b), n=k, go to 5.
10. If b is prime, then a(k)=b
11. If k
12. go to 1.
112 decimal digits of d are sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=50 has 109 decimal digits.

Examples

			1.5039285240695206335276890678975831991907388495811384290029993506576595475616...
		

Crossrefs

Programs

  • PARI
    A339457(n=63, prec=200) = {
    \\ returns the list of the first digits of the constant.
    \\ the number of digits increases faster than n
      my(curprec=default(realprecision));
      default(realprecision, max(prec,curprec));
      my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
      for(j=1, n-1,
        b=floor(c^(j^d));
        until(ok,
          p=smpr(b);
          ok = 1;
          listput(a,p,j);
          if(p!=b,
             d=log(log(p)/log(c))/log(j);
             for(k=1,j-2,
                 b=floor(c^(k^d));
                 if(b!=a[k],
                    ok=0;
                    j=k;
                    break;
                   );
                );
            );
        );
      );
      my(p=floor(-log(d-log(log(a[n-2])/log(c))/log(n-2))/log(10)) );
      default(realprecision, curprec);
      return(digits(floor(d*10^p),10));
    } \\ François Marques, Dec 08 2020

A339458 Continued fraction expansion of the smallest constant d such that the numbers floor(2^(n^d)) are distinct primes for all n >= 1.

Original entry on oeis.org

1, 1, 1, 63, 7, 3, 2, 2, 1, 1, 1, 250, 2, 1, 2, 1, 2, 3, 1, 4, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 6, 7, 1, 1, 1, 6, 1, 1, 9, 9, 2, 1, 6, 2, 5, 1, 25, 1, 1, 1, 2, 18, 1, 3, 5, 1, 1, 5, 1, 3, 1, 1, 4, 1, 1, 3, 2, 2, 3, 40, 2, 3, 8, 2, 2, 25, 1, 5, 2, 1, 1, 3, 2, 2, 1, 10, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 2, 420, 2, 2, 1
Offset: 1

Author

Bernard Montaron, Dec 06 2020

Keywords

Examples

			1+1/(1+1/(1+1/(63+1/(7+1/(3+1/(2+1/(2+1/(1+1/(1+1/(1+1/(250] = 22739482/15120055 = 1.503928524069522...
The constant is equal to d=1.503928524069520633527689067897583199190738849581138429002999...
		

Crossrefs

Programs

  • PARI
    A339458(n=63, prec=200)={
      my(curprec=default(realprecision));
      default(realprecision, max(prec,curprec));
      my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
      for(j=1, n-1,
        b=floor(c^(j^d));
        until(ok,
          p=smpr(b);
          ok = 1;
          listput(a,p,j);
          if(p!=b,
             d=log(log(p)/log(c))/log(j);
             for(k=1,j-2,
                 b=floor(c^(k^d));
                 if(b!=a[k],
                    ok=0;
                    j=k;
                    break;
                   );
                );
            );
        );
      );
      default(realprecision, curprec);
      return(contfrac(d));
    } \\ François Marques, Dec 08 2020
Showing 1-2 of 2 results.