cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339459 Prime numbers a(n) = floor(2^(n^d)) for all n>=1 where d=1.5039285240... is the constant defined at A339457.

Original entry on oeis.org

2, 7, 37, 263, 2437, 28541, 414893, 7368913, 157859813, 4035572951, 122006926709, 4328504865941, 178988464493359, 8575347401843113, 473485756611713633, 29985730185033339911, 2168685169398896331137, 178419507110725228550743
Offset: 1

Views

Author

Bernard Montaron, Dec 06 2020

Keywords

Comments

Assuming Cramer's conjecture on prime gaps is true, it can be proved that there exists at least one constant d such that all terms of the sequence are primes. The constant giving the smallest growth rate is d=1.503928524069520633527689067897583199190738...
Algorithm to generate the smallest constant d and the associated prime number sequence a(n) = floor(2^(n^d)).
0. n=1, a(1)=2, d=1
1. n=n+1
2. b=floor(2^(n^d))
3. p=smpr(b) (smallest prime >= b)
4. If p=b, then a(n)=p, go to 1.
5. d=log(log(p)/log(2))/log(n)
6. a(n)=p
7. k=1
8. b=floor(2^(k^d))
9. If b<>a(k) and b not prime, then p=smpr(b), n=k, go to 5.
10. If b is prime then a(k)=b
11. If k
12. go to 1.
112 decimals of d are sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=50 has 109 decimal digits.

Examples

			This example illustrates the importance of doing full precision calculations: a(19) = floor(2^(19^d)) = floor(2^83.7826351429215150692195114432) = 16637432012996855576590853. Here, the precision required on the exponent of 2 is 28 decimals in order to obtain the correct value for a(19). And the precision required keeps increasing with the index value n.
		

Crossrefs

Programs

  • PARI
    A339459(n=30, prec=100) = {
    \\ if precision is large enough, returns the list of first n terms of the sequence
      my(curprec=default(realprecision));
      default(realprecision, max(prec,curprec));
      my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
      for(j=1, n-1,
        b=floor(c^(j^d));
        until(ok,
          p=smpr(b);
          ok = 1;
          listput(a,p,j);
          if(p!=b,
             d=log(log(p)/log(c))/log(j);
             for(k=1,j-2,
                 b=floor(c^(k^d));
                 if(b!=a[k],
                    ok=0;
                    j=k;
                    break;
                   );
                );
            );
        );
      );
      default(realprecision, curprec);
      return(a);
    } \\ François Marques, Dec 08 2020

Formula

a(n) = floor(2^(n^d)) where d=1.5039285240...

A339458 Continued fraction expansion of the smallest constant d such that the numbers floor(2^(n^d)) are distinct primes for all n >= 1.

Original entry on oeis.org

1, 1, 1, 63, 7, 3, 2, 2, 1, 1, 1, 250, 2, 1, 2, 1, 2, 3, 1, 4, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 6, 7, 1, 1, 1, 6, 1, 1, 9, 9, 2, 1, 6, 2, 5, 1, 25, 1, 1, 1, 2, 18, 1, 3, 5, 1, 1, 5, 1, 3, 1, 1, 4, 1, 1, 3, 2, 2, 3, 40, 2, 3, 8, 2, 2, 25, 1, 5, 2, 1, 1, 3, 2, 2, 1, 10, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 2, 420, 2, 2, 1
Offset: 1

Author

Bernard Montaron, Dec 06 2020

Keywords

Examples

			1+1/(1+1/(1+1/(63+1/(7+1/(3+1/(2+1/(2+1/(1+1/(1+1/(1+1/(250] = 22739482/15120055 = 1.503928524069522...
The constant is equal to d=1.503928524069520633527689067897583199190738849581138429002999...
		

Crossrefs

Programs

  • PARI
    A339458(n=63, prec=200)={
      my(curprec=default(realprecision));
      default(realprecision, max(prec,curprec));
      my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
      for(j=1, n-1,
        b=floor(c^(j^d));
        until(ok,
          p=smpr(b);
          ok = 1;
          listput(a,p,j);
          if(p!=b,
             d=log(log(p)/log(c))/log(j);
             for(k=1,j-2,
                 b=floor(c^(k^d));
                 if(b!=a[k],
                    ok=0;
                    j=k;
                    break;
                   );
                );
            );
        );
      );
      default(realprecision, curprec);
      return(contfrac(d));
    } \\ François Marques, Dec 08 2020
Showing 1-2 of 2 results.