A339554 Number of subsets of {1..n} whose sum is a perfect power.
1, 1, 2, 5, 9, 15, 25, 48, 99, 187, 326, 543, 896, 1497, 2568, 4554, 8504, 17074, 36011, 75842, 153964, 298835, 561337, 1044317, 1968266, 3796589, 7448571, 14648620, 28541211, 54900185, 104612044, 198620706, 377264405, 717303565, 1363083731, 2585928327
Offset: 1
Keywords
Examples
a(6) = 15 subsets: {1}, {4}, {1, 3}, {2, 6}, {3, 5}, {3, 6}, {4, 5}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {1, 4, 5, 6}, {2, 3, 5, 6} and {1, 2, 3, 4, 6}.
Links
- Eric Weisstein's World of Mathematics, Perfect Power
Programs
-
Python
from sympy import perfect_power from functools import lru_cache @lru_cache(maxsize=None) def b(n, s, c): if n == 0: if c > 0 and (s==1 or perfect_power(s)): return 1 return 0 return b(n-1, s, c) + b(n-1, s+n, c+1) a = lambda n: b(n, 0, 0) print([a(n) for n in range(1, 37)]) # Michael S. Branicky, Dec 10 2020
Extensions
a(25)-a(36) from Alois P. Heinz, Dec 08 2020