A339565 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (1,2), (2,1).
1, 3, 17, 101, 627, 3999, 25955, 170571, 1131433, 7559301, 50795985, 342935689, 2324278669, 15804931797, 107775401349, 736723618773, 5046774983235, 34636814325087, 238114193665451, 1639378334244867, 11301978856210543, 78010917772099207, 539055832175992119
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1179 (first 101 terms from Kent Mei)
Programs
-
Maple
a:= proc(n) local t; 1/(1-x-y-x*y-(x*y^2)-(x^2*y)); for t in [x, y] do coeftayl(%, t=0, n) od end: seq(a(n), n=0..25); # Alois P. Heinz, Dec 09 2020 # second Maple program: b:= proc(l) option remember; `if`(l[2]=0, 1, add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h= [[1, 0], [0, 1], [1$2], [1, 2], [2, 1]])) end: a:= n-> b([n$2]): seq(a(n), n=0..25); # Alois P. Heinz, Dec 09 2020 # third Maple program: a:= proc(n) option remember; `if`(n<3, [1, 3, 17][n+1], ((6*n-3)*a(n-1)+(7*n-7)*a(n-2)+(4*n-6)*a(n-3))/n) end: seq(a(n), n=0..25); # Alois P. Heinz, Dec 09 2020
-
Mathematica
b[l_] := b[l] = If[l[[2]] == 0, 1, Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l - h]], {h, {{1, 0}, {0, 1}, {1, 1}, {1, 2}, {2, 1}}}]]; a[n_] := b[{n, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)
Formula
a(n) = [(x*y)^n] 1/(1-x-y-x*y-x*y^2-x^2*y). - Alois P. Heinz, Dec 09 2020
a(n) = A382436(2n,n). - Alois P. Heinz, Mar 25 2025
a(n) ~ sqrt((3776 + (26570110976 - 74946048*sqrt(177))^(1/3) + 8*(59*(879572 + 2481*sqrt(177)))^(1/3))/11328) * (2 + (459 - 12*sqrt(177))^(1/3)/3 + (153 + 4*sqrt(177))^(1/3)/3^(2/3))^n / sqrt(Pi*n). - Vaclav Kotesovec, Mar 26 2025