cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382436 Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 9, 17, 9, 1, 1, 12, 36, 36, 12, 1, 1, 15, 64, 101, 64, 15, 1, 1, 18, 101, 227, 227, 101, 18, 1, 1, 21, 147, 440, 627, 440, 147, 21, 1, 1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1, 1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1
Offset: 0

Views

Author

F. Chapoton, Mar 25 2025

Keywords

Comments

The original definition was "Decomposition of A077938".
Every row is symmetric.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   6,    1;
  1,  9,  17,    9,    1;
  1, 12,  36,   36,   12,    1;
  1, 15,  64,  101,   64,   15,    1;
  1, 18, 101,  227,  227,  101,   18,    1;
  1, 21, 147,  440,  627,  440,  147,   21,   1;
  1, 24, 202,  767, 1459, 1459,  767,  202,  24,  1;
  1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1;
  ...
		

Crossrefs

Similar to A008288, A103450, and A382444.
Row sums are A077938.
T(2n, n) gives A339565.
Cf. A056594.

Programs

  • Sage
    y = polygen(QQ, 'y')
    x = y.parent()[['x']].gen()
    inverse = 1 + (-y - 1)*x - y*x^2 + (-y^2 - y)*x^3
    gf = 1 / inverse
    [list(u) for u in list(gf.O(11))]

Formula

G.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).
Sum_{k=0..n} (-1)^k * T(n,k) = A056594(n). - Alois P. Heinz, Mar 25 2025

A339390 Number of paths from (0,0,0) to (n,n,n) using steps (1,0,0), (0,1,0), (0,0,1), (1,1,1), and (2,2,2).

Original entry on oeis.org

1, 7, 116, 2397, 54845, 1329644, 33464881, 864627351, 22776683200, 609024723535, 16478750543705, 450190397799036, 12397538372467109, 343712858468053319, 9584085091610235280, 268571959802603851989, 7558772037473679862681, 213548821612723752662596
Offset: 0

Views

Author

William J. Wang, Dec 02 2020

Keywords

Comments

The ratio of any two consecutive terms of this sequence a(n+1)/a(n) seems to grow asymptotically to ~30 as n increases (observation).

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[3]=0, 1,
          add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h=
          [[1, 0$2], [0, 1, 0], [0$2, 1], [1$3], [2$3]]))
        end:
    a:= n-> b([n$3]):
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 04 2020
    # second Maple program:
    a:= proc(n) local t; 1/(1-x-y-z-x*y*z-(x*y*z)^2);
          for t in [x, y, z] do coeftayl(%, t=0, n) od
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 05 2020
    # third Maple program:
    a:= proc(n) option remember; `if`(n<6, [1, 7, 116, 2397, 54845,
          1329644][n+1], ((3*n-7)*(3*n-2)*(30*n^2-50*n+13)*a(n-1) -(3*n-2)
          *(3*n-5)*a(n-2) -(45*n^4-300*n^3+677*n^2-560*n+108)*a(n-3)
          +(3*n-2)*(3*n-11)*a(n-4) +(3*n-1)*(9*n^3-75*n^2+197*n-154)*a(n-5)
          +(3*n-1)*(3*n-4)*(n-4)^2*a(n-6)) / ((3*n-4)*(3*n-7)*n^2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 05 2020
  • Mathematica
    b[l_] := b[l] = If[l[[3]] == 0, 1,
         Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l-h]], {h,
         {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 1}, {2, 2, 2}}}]];
    a[n_] := b[{n, n, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)

Formula

From Alois P. Heinz, Dec 05 2020: (Start)
a(n) = [(x*y*z)^n] 1/(1-x-y-z-x*y*z-(x*y*z)^2).
a(n) = ((3*n-7)*(3*n-2)*(30*n^2-50*n+13)*a(n-1) - (3*n-2)*(3*n-5)*a(n-2) - (45*n^4-300*n^3+677*n^2-560*n+108)*a(n-3) + (3*n-2)*(3*n-11)*a(n-4) + (3*n-1)*(9*n^3-75*n^2+197*n-154)*a(n-5) + (3*n-1)*(3*n-4)*(n-4)^2*a(n-6)) / ((3*n-4)*(3*n-7)*n^2) for n>=6. (End)
Showing 1-2 of 2 results.