A382436
Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 9, 17, 9, 1, 1, 12, 36, 36, 12, 1, 1, 15, 64, 101, 64, 15, 1, 1, 18, 101, 227, 227, 101, 18, 1, 1, 21, 147, 440, 627, 440, 147, 21, 1, 1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1, 1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 9, 17, 9, 1;
1, 12, 36, 36, 12, 1;
1, 15, 64, 101, 64, 15, 1;
1, 18, 101, 227, 227, 101, 18, 1;
1, 21, 147, 440, 627, 440, 147, 21, 1;
1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1;
1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1;
...
A339390
Number of paths from (0,0,0) to (n,n,n) using steps (1,0,0), (0,1,0), (0,0,1), (1,1,1), and (2,2,2).
Original entry on oeis.org
1, 7, 116, 2397, 54845, 1329644, 33464881, 864627351, 22776683200, 609024723535, 16478750543705, 450190397799036, 12397538372467109, 343712858468053319, 9584085091610235280, 268571959802603851989, 7558772037473679862681, 213548821612723752662596
Offset: 0
-
b:= proc(l) option remember; `if`(l[3]=0, 1,
add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h=
[[1, 0$2], [0, 1, 0], [0$2, 1], [1$3], [2$3]]))
end:
a:= n-> b([n$3]):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 04 2020
# second Maple program:
a:= proc(n) local t; 1/(1-x-y-z-x*y*z-(x*y*z)^2);
for t in [x, y, z] do coeftayl(%, t=0, n) od
end:
seq(a(n), n=0..20); # Alois P. Heinz, Dec 05 2020
# third Maple program:
a:= proc(n) option remember; `if`(n<6, [1, 7, 116, 2397, 54845,
1329644][n+1], ((3*n-7)*(3*n-2)*(30*n^2-50*n+13)*a(n-1) -(3*n-2)
*(3*n-5)*a(n-2) -(45*n^4-300*n^3+677*n^2-560*n+108)*a(n-3)
+(3*n-2)*(3*n-11)*a(n-4) +(3*n-1)*(9*n^3-75*n^2+197*n-154)*a(n-5)
+(3*n-1)*(3*n-4)*(n-4)^2*a(n-6)) / ((3*n-4)*(3*n-7)*n^2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Dec 05 2020
-
b[l_] := b[l] = If[l[[3]] == 0, 1,
Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l-h]], {h,
{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 1}, {2, 2, 2}}}]];
a[n_] := b[{n, n, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)
Showing 1-2 of 2 results.
Comments