cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339604 Decimal expansion of Sum_{k>=1} (zeta(3*k)-1).

Original entry on oeis.org

2, 2, 1, 6, 8, 9, 3, 9, 5, 1, 0, 9, 2, 6, 7, 0, 3, 8, 3, 9, 2, 1, 1, 8, 4, 2, 1, 1, 8, 2, 7, 6, 5, 1, 5, 2, 5, 9, 5, 2, 4, 1, 3, 9, 8, 1, 8, 1, 1, 3, 0, 3, 7, 8, 4, 0, 5, 1, 2, 8, 2, 7, 5, 2, 5, 7, 5, 2, 1, 0, 2, 4, 9, 4, 2, 6, 1, 5, 9, 3, 5, 6, 7, 7, 3, 9, 5, 4, 4, 4, 9, 4, 3, 0, 7, 2, 7, 0, 4, 4, 6, 0, 4, 8, 5
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2020

Keywords

Comments

For additional comments and generalization see attached text file.

Examples

			0.221689395109267...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Chop[N[Sum[Zeta[3 n] - 1, {n, 1, Infinity}], 105]]][[1]]
  • PARI
    suminf(k=1, zeta(3*k)-1) \\ Michel Marcus, Dec 09 2020

Formula

Equals Sum_{k>=2} 1/(k^3-1).
Equals 1 + gamma/3 + (1/3)*Re(Psi(1/2 + i*sqrt(3)/2)) - sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals 1 + gamma/3 - (1/3)*A339135 + 2*log(2)/9 - sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6.
Equals 7/6 - Pi*tanh(Pi*sqrt(3)/2)/(2*sqrt(3)) - A339605/2.
Equals 4/3 - Pi*tanh(Pi*sqrt(3)/2)/sqrt(3) + A339606.
Equals 1 - A339605 - A339606.