cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A068601 a(n) = n^3 - 1.

Original entry on oeis.org

0, 7, 26, 63, 124, 215, 342, 511, 728, 999, 1330, 1727, 2196, 2743, 3374, 4095, 4912, 5831, 6858, 7999, 9260, 10647, 12166, 13823, 15624, 17575, 19682, 21951, 24388, 26999, 29790, 32767, 35936, 39303, 42874, 46655, 50652, 54871, 59318, 63999, 68920
Offset: 1

Views

Author

Naohiro Nomoto, Mar 28 2002

Keywords

Comments

a(n) is the least positive integer k such that k can only contain 'n-1' in exactly 2 different bases B, where 1 < B <= k.
Apart from the first term, the same as A135300. - R. J. Mathar, Apr 29 2008
A058895(n)^3 + a(n)^3 + A033562(n)^3 = A185065(n)^3. - Vincenzo Librandi, Mar 13 2012
Numbers k such that for every nonnegative integer m, k^(3*m+1) + k^(3*m) is a cube. - Arkadiusz Wesolowski, Aug 10 2013

Examples

			For n=6; 215 written in bases 6 and 42 is 555, 55 and (555, 55) are exactly 2 different bases.
		

Crossrefs

Programs

Formula

Partial sums of A003215, hex (or centered hexagonal) numbers: 3*n(n+1)+1. - Jonathan Vos Post, Mar 16 2006
G.f.: x^2*(7-2*x+x^2)/(1-x)^4. - Colin Barker, Feb 12 2012
4*a(m^2-2*m+2) = (m^2-m+1)^3 + (m^2-m-1)^3 + (m^2-3*m+3)^3 + (m^2-3*m+1)^3. - Bruno Berselli, Jun 23 2014
a(n) = Sum_{i=1..n-1} (i+1)^3 - i^3. - Wesley Ivan Hurt, Jul 23 2014
Sum_{n>=2} 1/a(n) = Sum_{n>=1} (zeta(3*n) - 1) = A339604. - Amiram Eldar, Nov 06 2020
Product_{n>=2} (1 + 1/a(n)) = 3*Pi*sech(sqrt(3)*Pi/2). - Amiram Eldar, Jan 20 2021
E.g.f.: 1 + exp(x)*(x^3 + 3*x^2 + x - 1). - Stefano Spezia, Jul 06 2021

A256919 Decimal expansion of Sum_{k>=1} (zeta(4*k) - 1).

Original entry on oeis.org

0, 8, 6, 6, 6, 2, 9, 7, 6, 2, 6, 5, 7, 0, 9, 4, 1, 2, 9, 3, 2, 9, 7, 4, 6, 0, 2, 6, 2, 4, 9, 9, 9, 7, 5, 4, 7, 7, 7, 1, 7, 1, 8, 6, 6, 7, 9, 8, 0, 9, 1, 6, 6, 7, 2, 1, 2, 4, 6, 8, 7, 5, 7, 8, 0, 4, 9, 2, 2, 8, 7, 6, 0, 4, 0, 8, 4, 4, 9, 8, 9, 1, 2, 8, 2, 1, 7, 2, 2, 4, 1, 2, 0, 3, 0, 2, 2, 5, 4, 0, 6, 1, 7, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.0866629762657094129329746026249997547771718667980916672...
= -3 + Pi^4/90 + Pi^8/9450 + 691*Pi^12/638512875 + ...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 265.

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[7/8 - (Pi/4)*Coth[Pi], 10, 104] // First]

Formula

Equals 7/8 - (Pi/4)*coth(Pi).
Equals Sum_{n>=2} 1/(n^4 - 1). - Vaclav Kotesovec, Dec 08 2020
Equals (1/2)* Sum_{n>=2} 1/(n^2-1) - (1/2)* Sum_{n>=2} 1/(n^2+1) = (3/4 - A100554)/2. - R. J. Mathar, Jan 22 2021

A339606 Decimal expansion of Sum_{k>=0} (zeta(3*k+2)-1).

Original entry on oeis.org

6, 8, 6, 5, 0, 3, 3, 4, 2, 3, 3, 8, 6, 2, 3, 8, 8, 5, 9, 6, 4, 6, 0, 5, 2, 1, 2, 1, 8, 6, 8, 5, 4, 7, 5, 2, 1, 8, 2, 2, 3, 2, 6, 9, 9, 2, 1, 9, 6, 3, 6, 1, 8, 8, 4, 5, 8, 6, 3, 4, 4, 1, 4, 9, 2, 8, 8, 5, 6, 1, 4, 9, 9, 4, 5, 9, 7, 4, 1, 3, 1, 9, 4, 2, 1, 8, 2, 5, 6, 1, 1, 8, 2, 1, 2, 0, 7, 1, 4, 0, 3, 6, 3, 9, 9
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2020

Keywords

Examples

			0.6865033423386238859646...
		

Crossrefs

Programs

  • Maple
    evalf(Re(sum(1/(k^3+1), k=1..infinity)), 120);  # Alois P. Heinz, Dec 12 2020
  • Mathematica
    RealDigits[Chop[N[Sum[Zeta[3 n + 2] - 1, {n, 0, Infinity}], 105]]][[1]]
  • PARI
    suminf(k=0, zeta(3*k+2)-1) \\ Michel Marcus, Dec 09 2020

Formula

Equals Sum_{k>=1} 1/(k^3 + 1).
Equals -1/3 + gamma/3 + (1/3)*Re(Psi(1/2 + i*sqrt(3)/2)) + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6, where Psi is digamma function, gamma is Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals -1/3 + gamma/3 - (1/3)*A339135 + 2*log(2)/9 + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6.
Equals 1 - A339605 - A339604.
Equals 1/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(3*k)-1). - Amiram Eldar, Jan 07 2024

A339605 Decimal expansion of Sum_{k>=1} (zeta(3*k+1) - 1).

Original entry on oeis.org

0, 9, 1, 8, 0, 7, 2, 6, 2, 5, 5, 2, 1, 0, 9, 0, 7, 5, 6, 4, 3, 2, 7, 6, 3, 6, 6, 6, 3, 0, 3, 8, 0, 0, 9, 5, 2, 2, 2, 5, 2, 5, 9, 0, 2, 5, 9, 9, 2, 3, 3, 4, 3, 3, 1, 3, 6, 2, 3, 7, 3, 0, 9, 8, 1, 3, 6, 2, 2, 8, 2, 5, 1, 1, 1, 4, 0, 9, 9, 3, 2, 3, 8, 0, 4, 2, 1, 9, 9, 3, 8, 7, 4, 8, 0, 6, 5, 8, 1, 5, 0, 3, 1, 1, 4, 8
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2020

Keywords

Examples

			0.09180726255210907564327636663...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[Chop[N[Sum[Zeta[3 n + 1] - 1, {n, 1, Infinity}], 105]]][[1]]]
  • PARI
    suminf(k=1, zeta(3*k+1)-1) \\ Michel Marcus, Dec 09 2020

Formula

Equals Sum_{k>=2} (k^5 - 3*k^4 + k^3 - k^2 + k - 1)/(k*(k^6 - 1)).
Equals 1/3 - 2*gamma/3 - (2/3)*Re(Psi(1/2 + i*sqrt(3)/2)), where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals 1/3 - 2*gamma/3 + 2*A339135/3 - 4*log(2)/9.
Equals 1 - A339604 - A339606.
Equals Sum_{k>=2} 1/(k*(k^3 - 1)). - Vaclav Kotesovec, Dec 24 2020

A338858 Decimal expansion of Sum_{k>=0} (zeta(4*k+3)-1).

Original entry on oeis.org

2, 1, 0, 9, 3, 2, 9, 9, 2, 7, 6, 2, 0, 0, 4, 9, 1, 8, 9, 3, 9, 1, 9, 5, 2, 8, 6, 4, 0, 2, 1, 5, 6, 5, 7, 6, 7, 5, 9, 2, 1, 1, 1, 5, 3, 8, 5, 1, 7, 3, 2, 6, 1, 1, 0, 1, 9, 3, 7, 8, 4, 7, 9, 5, 0, 1, 8, 8, 6, 4, 2, 0, 7, 6, 8, 4, 7, 2, 6, 6, 2, 1, 6, 0, 2, 0, 8, 8, 8, 6, 3, 9, 3, 6, 0, 0, 2, 1, 0, 6, 6, 4, 1, 9, 8
Offset: 0

Views

Author

Artur Jasinski, Dec 24 2020

Keywords

Comments

For additional comments and generalization see A339604.

Examples

			0.2109329927620049189391952864...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Re[Sum[Zeta[4 n + 3] - 1, {n, 0, Infinity}]], 105]][[1]]
  • PARI
    suminf(k=0, zeta(4*k+3)-1) \\ Michel Marcus, Dec 24 2020

Formula

Equals Sum_{k>=2} k/(k^4-1).
Equals -1/8 + gamma/2 + Re(Psi(i))/2, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals -1/8 + Re(H(I))/2, where H is the harmonic number function.

A339083 Decimal expansion of Sum_{k>=0} (zeta(4*k+2)-1).

Original entry on oeis.org

6, 6, 3, 3, 3, 7, 0, 2, 3, 7, 3, 4, 2, 9, 0, 5, 8, 7, 0, 6, 7, 0, 2, 5, 3, 9, 7, 3, 7, 5, 0, 0, 0, 2, 4, 5, 2, 2, 2, 8, 2, 8, 1, 3, 3, 2, 0, 1, 9, 0, 8, 3, 3, 2, 7, 8, 7, 5, 3, 1, 2, 4, 2, 1, 9, 5, 0, 7, 7, 1, 2, 3, 9, 5, 9, 1, 5, 5, 0, 1, 0, 8, 7, 1, 7, 8, 2, 7, 7, 5, 8, 7, 9, 6, 9, 7, 7, 4, 5, 9, 3, 8, 2, 5, 8, 9, 4, 5
Offset: 0

Views

Author

Artur Jasinski, Dec 24 2020

Keywords

Comments

Sum_{k>=1} zeta(4*k)-1 see A256919.
Sum_{k>=1} zeta(4*k+1)-1 see A339097.
Sum_{k>=0} zeta(4*k+3)-1 see A338858.
For additional comments and generalization see A339604.

Examples

			0.663337023734290587067025397375...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[Zeta[4 n + 2] - 1, {n, 0, Infinity}], 105]][[1]]
  • PARI
    suminf(k=0, zeta(4*k+2)-1) \\ Michel Marcus, Dec 24 2020

Formula

Equals Sum_{k>=2} k^2/(k^4-1).
Equals -1/8 + Pi*coth(Pi)/4 = -1/8 + A338815 = 3/4 - A256919.

Extensions

a(104) corrected and more terms from Georg Fischer, Jun 06 2024

A339097 Decimal expansion of Sum_{k>=1} zeta(4*k+1)-1.

Original entry on oeis.org

0, 3, 9, 0, 6, 7, 0, 0, 7, 2, 3, 7, 9, 9, 5, 0, 8, 1, 0, 6, 0, 8, 0, 4, 7, 1, 3, 5, 9, 7, 8, 4, 3, 4, 2, 3, 2, 4, 0, 7, 8, 8, 8, 4, 6, 1, 4, 8, 2, 6, 7, 3, 8, 8, 9, 8, 0, 6, 2, 1, 5, 2, 0, 4, 9, 8, 1, 1, 3, 5, 7, 9, 2, 3, 1, 5, 2, 7, 3, 3, 7, 8, 3, 9, 7, 9, 1, 1, 1, 3, 6, 0, 6, 3, 9, 9, 7, 8, 9, 3, 3, 5, 8, 0, 1, 9
Offset: 0

Views

Author

Artur Jasinski, Dec 24 2020

Keywords

Examples

			0.0390670072379950810608...
		

Crossrefs

Cf. A256919 (4*k), A339083 (4*k+2), A338858 (4k+3).

Programs

  • Mathematica
    Join[{0},RealDigits[N[Re[Sum[Zeta[4 n + 1] - 1, {n, 1, Infinity}]], 105]][[1]]]
  • PARI
    suminf(k=1, zeta(4*k+1)-1) \\ Michel Marcus, Dec 24 2020

Formula

Equals Sum_{k>=2} (k^3 -3*k^2 + k - 2)/(k^5 - k).
Equals 3/8 - gamma/2 - Re(Psi(i))/2, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals 3/8 - Re(H(I))/2, where H is the harmonic number function.
Equals 1/4 - A338858.
Equals Sum_{k>=2} 1/(k*(k^4 - 1)). - Vaclav Kotesovec, Dec 24 2020

A339801 Decimal expansion of the real part of harmonic number H(1/2 + i*sqrt(3)/2), where i=sqrt(-1).

Original entry on oeis.org

8, 6, 2, 2, 8, 9, 1, 0, 6, 1, 7, 1, 8, 3, 6, 3, 8, 6, 5, 3, 5, 0, 8, 5, 4, 5, 0, 0, 5, 4, 4, 2, 9, 8, 5, 7, 1, 6, 6, 2, 1, 1, 1, 4, 6, 1, 0, 1, 1, 4, 9, 8, 5, 0, 2, 9, 5, 6, 4, 4, 0, 3, 5, 2, 7, 9, 5, 6, 5, 7, 6, 2, 3, 3, 2, 8, 8, 5, 1, 0, 1, 4, 2, 9, 3, 6, 7, 0, 0, 9, 1, 8, 7, 7, 9, 0, 1, 2, 7, 7, 4, 5, 3, 2, 8
Offset: 0

Views

Author

Artur Jasinski, Dec 17 2020

Keywords

Comments

For imaginary part see A339802.
For real b, Im(Psi(1/2 + b*i)) = Pi*tanh(Pi*b)/2, but no such closed formula is known for the real part (see Wikipedia link). - Vaclav Kotesovec, Dec 19 2020

Examples

			0.862289106171836386535085450...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Re[HarmonicNumber[1/2 + I Sqrt[3]/2]], 105]][[1]]

Formula

Equals 1/2 + gamma + Re(Psi(1/2 + i*sqrt(3)/2)), where gamma is the Euler-Mascheroni constant (see A001620) and Psi is the digamma function.
Equals -1/2 + 3*A339604 + 3*A339606.
Equals Re((1 + i*sqrt(3))*Sum_{k>=0} 1/((1 + k)*(3 + i*sqrt(3) + 2*k))).

A351432 Decimal expansion of sqrt(3)/2 + Pi*tanh(Pi*sqrt(3)/2)/2.

Original entry on oeis.org

2, 4, 2, 3, 2, 6, 6, 6, 2, 8, 4, 9, 7, 6, 3, 2, 6, 9, 6, 8, 9, 3, 2, 9, 4, 4, 9, 5, 1, 9, 7, 1, 2, 6, 8, 5, 8, 2, 2, 5, 5, 8, 8, 2, 3, 3, 3, 5, 8, 5, 1, 3, 1, 3, 1, 4, 2, 5, 9, 4, 9, 6, 7, 2, 7, 6, 4, 6, 8, 0, 0, 0, 9, 6, 9, 0, 2, 0, 0, 4, 0, 6, 4, 3, 6, 1, 5, 1, 2, 8, 1, 5, 8, 3, 2, 2, 7, 1, 9, 0, 9, 5, 0, 1, 0, 9
Offset: 1

Views

Author

Artur Jasinski, Feb 11 2022

Keywords

Comments

Imaginary part of psi(-1/2 + i*sqrt(3)/2) where psi is the digamma function.

Examples

			2.423266628497632696893294495...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[3]/2 + 1/2 Pi Tanh[Sqrt[3] Pi/2], 105]][[1]]
  • PARI
    imag(psi(-1/2+I*sqrt(3)/2)) \\ Michel Marcus, Feb 11 2022

Formula

Equals sqrt(3)*(1 - gamma/3 - Re(psi(-1/2 + i*sqrt(3)/2))/3 + A339606).

Extensions

Last two digits corrected by Georg Fischer, May 15 2024
Showing 1-9 of 9 results.