cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A339604 Decimal expansion of Sum_{k>=1} (zeta(3*k)-1).

Original entry on oeis.org

2, 2, 1, 6, 8, 9, 3, 9, 5, 1, 0, 9, 2, 6, 7, 0, 3, 8, 3, 9, 2, 1, 1, 8, 4, 2, 1, 1, 8, 2, 7, 6, 5, 1, 5, 2, 5, 9, 5, 2, 4, 1, 3, 9, 8, 1, 8, 1, 1, 3, 0, 3, 7, 8, 4, 0, 5, 1, 2, 8, 2, 7, 5, 2, 5, 7, 5, 2, 1, 0, 2, 4, 9, 4, 2, 6, 1, 5, 9, 3, 5, 6, 7, 7, 3, 9, 5, 4, 4, 4, 9, 4, 3, 0, 7, 2, 7, 0, 4, 4, 6, 0, 4, 8, 5
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2020

Keywords

Comments

For additional comments and generalization see attached text file.

Examples

			0.221689395109267...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Chop[N[Sum[Zeta[3 n] - 1, {n, 1, Infinity}], 105]]][[1]]
  • PARI
    suminf(k=1, zeta(3*k)-1) \\ Michel Marcus, Dec 09 2020

Formula

Equals Sum_{k>=2} 1/(k^3-1).
Equals 1 + gamma/3 + (1/3)*Re(Psi(1/2 + i*sqrt(3)/2)) - sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals 1 + gamma/3 - (1/3)*A339135 + 2*log(2)/9 - sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6.
Equals 7/6 - Pi*tanh(Pi*sqrt(3)/2)/(2*sqrt(3)) - A339605/2.
Equals 4/3 - Pi*tanh(Pi*sqrt(3)/2)/sqrt(3) + A339606.
Equals 1 - A339605 - A339606.

A339605 Decimal expansion of Sum_{k>=1} (zeta(3*k+1) - 1).

Original entry on oeis.org

0, 9, 1, 8, 0, 7, 2, 6, 2, 5, 5, 2, 1, 0, 9, 0, 7, 5, 6, 4, 3, 2, 7, 6, 3, 6, 6, 6, 3, 0, 3, 8, 0, 0, 9, 5, 2, 2, 2, 5, 2, 5, 9, 0, 2, 5, 9, 9, 2, 3, 3, 4, 3, 3, 1, 3, 6, 2, 3, 7, 3, 0, 9, 8, 1, 3, 6, 2, 2, 8, 2, 5, 1, 1, 1, 4, 0, 9, 9, 3, 2, 3, 8, 0, 4, 2, 1, 9, 9, 3, 8, 7, 4, 8, 0, 6, 5, 8, 1, 5, 0, 3, 1, 1, 4, 8
Offset: 0

Views

Author

Artur Jasinski, Dec 09 2020

Keywords

Examples

			0.09180726255210907564327636663...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[Chop[N[Sum[Zeta[3 n + 1] - 1, {n, 1, Infinity}], 105]]][[1]]]
  • PARI
    suminf(k=1, zeta(3*k+1)-1) \\ Michel Marcus, Dec 09 2020

Formula

Equals Sum_{k>=2} (k^5 - 3*k^4 + k^3 - k^2 + k - 1)/(k*(k^6 - 1)).
Equals 1/3 - 2*gamma/3 - (2/3)*Re(Psi(1/2 + i*sqrt(3)/2)), where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals 1/3 - 2*gamma/3 + 2*A339135/3 - 4*log(2)/9.
Equals 1 - A339604 - A339606.
Equals Sum_{k>=2} 1/(k*(k^3 - 1)). - Vaclav Kotesovec, Dec 24 2020

A364449 Lexicographically earliest sequence where n is banned for n^3 terms after each appearance.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 2, 1, 7, 1, 8, 1, 9, 1, 10, 1, 2, 1, 11, 1, 12, 1, 13, 1, 14, 1, 2, 1, 3, 1, 15, 1, 16, 1, 17, 1, 2, 1, 18, 1, 19, 1, 20, 1, 21, 1, 2, 1, 22, 1, 23, 1, 24, 1, 25, 1, 2, 1, 3, 1, 26, 1, 27, 1, 28, 1, 2, 1, 4, 1, 29, 1, 30, 1, 31, 1, 2, 1, 32, 1, 33, 1, 34, 1, 35
Offset: 1

Views

Author

Rok Cestnik, Jul 25 2023

Keywords

Comments

Sequence is unbounded. The fastest branch grows asymptotically linearly: limsup a(n)/n > 1-Sum_{n>0} 1/(n^3+1) = 1-A339606 = 0.313496...
If banning for n terms (A364447), or n^2 terms (A364448), the sequence is eventually periodic.

Examples

			a(n)   ban 1  2  3  4  5  6  7  ...
 1         |  |  |  |  |  |  |
 2         x  |  |  |  |  |  |
 1         |  x  |  |  |  |  |
 3         x  x  |  |  |  |  |
 1         |  x  x  |  |  |  |
 4         x  x  x  |  |  |  |
 1         |  x  x  x  |  |  |
 5         x  x  x  x  |  |  |
 1         |  x  x  x  x  |  |
 6         x  x  x  x  x  |  |
 1         |  |  x  x  x  x  |
 2         x  |  x  x  x  x  |
 1         |  x  x  x  x  x  |
 7         x  x  x  x  x  x  |
 1         |  x  x  x  x  x  x
 .
 .
 .
		

Crossrefs

Programs

  • Python
    a = []
    ban = [0 for n in range(500)]
    for i in range(1000):
        can = ban.index(0,1)
        ban = [max(b-1,0) for b in ban]
        a.append(can)
        ban[can] = can**3

A338858 Decimal expansion of Sum_{k>=0} (zeta(4*k+3)-1).

Original entry on oeis.org

2, 1, 0, 9, 3, 2, 9, 9, 2, 7, 6, 2, 0, 0, 4, 9, 1, 8, 9, 3, 9, 1, 9, 5, 2, 8, 6, 4, 0, 2, 1, 5, 6, 5, 7, 6, 7, 5, 9, 2, 1, 1, 1, 5, 3, 8, 5, 1, 7, 3, 2, 6, 1, 1, 0, 1, 9, 3, 7, 8, 4, 7, 9, 5, 0, 1, 8, 8, 6, 4, 2, 0, 7, 6, 8, 4, 7, 2, 6, 6, 2, 1, 6, 0, 2, 0, 8, 8, 8, 6, 3, 9, 3, 6, 0, 0, 2, 1, 0, 6, 6, 4, 1, 9, 8
Offset: 0

Views

Author

Artur Jasinski, Dec 24 2020

Keywords

Comments

For additional comments and generalization see A339604.

Examples

			0.2109329927620049189391952864...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Re[Sum[Zeta[4 n + 3] - 1, {n, 0, Infinity}]], 105]][[1]]
  • PARI
    suminf(k=0, zeta(4*k+3)-1) \\ Michel Marcus, Dec 24 2020

Formula

Equals Sum_{k>=2} k/(k^4-1).
Equals -1/8 + gamma/2 + Re(Psi(i))/2, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals -1/8 + Re(H(I))/2, where H is the harmonic number function.

A339097 Decimal expansion of Sum_{k>=1} zeta(4*k+1)-1.

Original entry on oeis.org

0, 3, 9, 0, 6, 7, 0, 0, 7, 2, 3, 7, 9, 9, 5, 0, 8, 1, 0, 6, 0, 8, 0, 4, 7, 1, 3, 5, 9, 7, 8, 4, 3, 4, 2, 3, 2, 4, 0, 7, 8, 8, 8, 4, 6, 1, 4, 8, 2, 6, 7, 3, 8, 8, 9, 8, 0, 6, 2, 1, 5, 2, 0, 4, 9, 8, 1, 1, 3, 5, 7, 9, 2, 3, 1, 5, 2, 7, 3, 3, 7, 8, 3, 9, 7, 9, 1, 1, 1, 3, 6, 0, 6, 3, 9, 9, 7, 8, 9, 3, 3, 5, 8, 0, 1, 9
Offset: 0

Views

Author

Artur Jasinski, Dec 24 2020

Keywords

Examples

			0.0390670072379950810608...
		

Crossrefs

Cf. A256919 (4*k), A339083 (4*k+2), A338858 (4k+3).

Programs

  • Mathematica
    Join[{0},RealDigits[N[Re[Sum[Zeta[4 n + 1] - 1, {n, 1, Infinity}]], 105]][[1]]]
  • PARI
    suminf(k=1, zeta(4*k+1)-1) \\ Michel Marcus, Dec 24 2020

Formula

Equals Sum_{k>=2} (k^3 -3*k^2 + k - 2)/(k^5 - k).
Equals 3/8 - gamma/2 - Re(Psi(i))/2, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals 3/8 - Re(H(I))/2, where H is the harmonic number function.
Equals 1/4 - A338858.
Equals Sum_{k>=2} 1/(k*(k^4 - 1)). - Vaclav Kotesovec, Dec 24 2020

A359944 Number of divisors d of n such that d-1 is a cube.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 19 2023

Keywords

Comments

The Cartesian equation for the Folium of Descartes is given as x^3 + y^3 = 3*k*x*y. If we set 3*k = n, then a(n)-1 is the number of integer solutions such that x,y > 0 and y >= x. Let d = m^3+1 be a divisor of n, then x = 3*k*m/(m^3+1); y = 3*k*m^2/(m^3+1) is a solution. - Thomas Scheuerle, Aug 07 2024

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, IntegerQ[Surd[#-1, 3]] &]; Array[a, 100] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, ispower(d-1, 3));

Formula

G.f.: Sum_{k>=0} x^(k^3+1)/(1 - x^(k^3+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(k^3+1) = 1 + A339606 = 1.686503... . - Amiram Eldar, Jan 01 2024

A339801 Decimal expansion of the real part of harmonic number H(1/2 + i*sqrt(3)/2), where i=sqrt(-1).

Original entry on oeis.org

8, 6, 2, 2, 8, 9, 1, 0, 6, 1, 7, 1, 8, 3, 6, 3, 8, 6, 5, 3, 5, 0, 8, 5, 4, 5, 0, 0, 5, 4, 4, 2, 9, 8, 5, 7, 1, 6, 6, 2, 1, 1, 1, 4, 6, 1, 0, 1, 1, 4, 9, 8, 5, 0, 2, 9, 5, 6, 4, 4, 0, 3, 5, 2, 7, 9, 5, 6, 5, 7, 6, 2, 3, 3, 2, 8, 8, 5, 1, 0, 1, 4, 2, 9, 3, 6, 7, 0, 0, 9, 1, 8, 7, 7, 9, 0, 1, 2, 7, 7, 4, 5, 3, 2, 8
Offset: 0

Views

Author

Artur Jasinski, Dec 17 2020

Keywords

Comments

For imaginary part see A339802.
For real b, Im(Psi(1/2 + b*i)) = Pi*tanh(Pi*b)/2, but no such closed formula is known for the real part (see Wikipedia link). - Vaclav Kotesovec, Dec 19 2020

Examples

			0.862289106171836386535085450...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Re[HarmonicNumber[1/2 + I Sqrt[3]/2]], 105]][[1]]

Formula

Equals 1/2 + gamma + Re(Psi(1/2 + i*sqrt(3)/2)), where gamma is the Euler-Mascheroni constant (see A001620) and Psi is the digamma function.
Equals -1/2 + 3*A339604 + 3*A339606.
Equals Re((1 + i*sqrt(3))*Sum_{k>=0} 1/((1 + k)*(3 + i*sqrt(3) + 2*k))).

A339802 Decimal expansion of the imaginary part of harmonic number H(1/2 + i*sqrt(3)/2) where i=sqrt(-1).

Original entry on oeis.org

6, 9, 1, 2, 1, 5, 8, 2, 0, 9, 2, 8, 7, 5, 5, 4, 0, 3, 3, 6, 5, 8, 4, 8, 1, 5, 3, 6, 9, 1, 2, 5, 4, 4, 9, 1, 2, 8, 2, 7, 8, 2, 9, 7, 9, 5, 4, 8, 1, 3, 2, 5, 0, 3, 3, 7, 0, 1, 4, 2, 6, 9, 3, 3, 1, 2, 7, 4, 6, 9, 9, 2, 7, 8, 1, 4, 0, 0, 3, 6, 9, 3, 5, 5, 0, 0, 5, 0, 9, 4, 8, 2, 5, 9, 7, 8, 6, 1, 5, 2, 7, 4, 4, 8, 3
Offset: 0

Views

Author

Artur Jasinski, Dec 17 2020

Keywords

Comments

For real part of H(1/2 + i*sqrt(3)/2) see A339801.

Examples

			0.691215820928755403365848...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Im[HarmonicNumber[1/2 + I Sqrt[3]/2]], 105]][[1]]

Formula

Equals (Pi/2)*tanh(Pi*sqrt(3)/2) - sqrt(3)/2.
Equals Im(Psi(3/2 + i*sqrt(3)/2)).
Equals -sqrt(3)/2 + Im(Psi(1/2 + i*sqrt(3)/2)).
Equals Im((1 + i*sqrt(3))*Sum_{k>=0} 1/((1 + k)*(3 + i*sqrt(3) + 2*k))).

A351432 Decimal expansion of sqrt(3)/2 + Pi*tanh(Pi*sqrt(3)/2)/2.

Original entry on oeis.org

2, 4, 2, 3, 2, 6, 6, 6, 2, 8, 4, 9, 7, 6, 3, 2, 6, 9, 6, 8, 9, 3, 2, 9, 4, 4, 9, 5, 1, 9, 7, 1, 2, 6, 8, 5, 8, 2, 2, 5, 5, 8, 8, 2, 3, 3, 3, 5, 8, 5, 1, 3, 1, 3, 1, 4, 2, 5, 9, 4, 9, 6, 7, 2, 7, 6, 4, 6, 8, 0, 0, 0, 9, 6, 9, 0, 2, 0, 0, 4, 0, 6, 4, 3, 6, 1, 5, 1, 2, 8, 1, 5, 8, 3, 2, 2, 7, 1, 9, 0, 9, 5, 0, 1, 0, 9
Offset: 1

Views

Author

Artur Jasinski, Feb 11 2022

Keywords

Comments

Imaginary part of psi(-1/2 + i*sqrt(3)/2) where psi is the digamma function.

Examples

			2.423266628497632696893294495...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[3]/2 + 1/2 Pi Tanh[Sqrt[3] Pi/2], 105]][[1]]
  • PARI
    imag(psi(-1/2+I*sqrt(3)/2)) \\ Michel Marcus, Feb 11 2022

Formula

Equals sqrt(3)*(1 - gamma/3 - Re(psi(-1/2 + i*sqrt(3)/2))/3 + A339606).

Extensions

Last two digits corrected by Georg Fischer, May 15 2024

A371945 Decimal expansion of Sum_{k>=0} (-1)^k / (k^3 + 1).

Original entry on oeis.org

5, 8, 5, 6, 9, 8, 8, 6, 1, 9, 4, 9, 7, 9, 1, 8, 8, 6, 4, 5, 3, 3, 2, 7, 0, 4, 6, 9, 5, 9, 1, 8, 6, 1, 5, 3, 9, 7, 5, 3, 6, 3, 0, 2, 1, 2, 8, 6, 9, 4, 9, 2, 8, 3, 7, 4, 7, 5, 2, 7, 3, 3, 2, 7, 7, 8, 0, 9, 0, 1, 4, 0, 7, 0, 0, 9, 4, 3, 8, 5, 6, 8, 2, 9, 9, 7
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2024

Keywords

Examples

			0.58569886194979188645332704695918615397536302...
		

Crossrefs

Cf. A339606.

Programs

  • Mathematica
    s = Chop[N[Sum[(-1)^k/(k^3 + 1), {k, 0, Infinity}], 120]]
    First[RealDigits[s]]
Showing 1-10 of 10 results.