cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339621 Sum of Fibonacci divisors of n^2 + 1.

Original entry on oeis.org

1, 3, 6, 8, 1, 16, 1, 8, 19, 3, 1, 3, 6, 42, 1, 3, 1, 8, 19, 3, 1, 50, 6, 8, 1, 3, 1, 8, 6, 3, 1, 16, 6, 8, 103, 3, 1, 8, 6, 3, 1, 3, 6, 8, 14, 3, 1, 55, 6, 3, 1, 3, 6, 8, 1, 126, 1, 21, 6, 3, 14, 3, 6, 8, 1, 3, 1, 8, 6, 3, 391, 3, 6, 21, 1, 3, 1, 8, 6, 3, 1, 37
Offset: 0

Views

Author

Michel Lagneau, Dec 10 2020

Keywords

Comments

A Fibonacci divisor of a number k is a Fibonacci number that divides k. (The divisor 1 is only counted once.)
For n < 2*10^5, the subsequence of primes begins by 3, 19, 37, 97, 103, 131, 139, 239, 241, 283, 359, 487, 631, ...
The Fibonacci numbers of the sequence are 1, 3, 8, 21, 55, 144, 377, ...
Conjecture: If the sum of the Fibonacci divisors of m^2 + 1 is a Fibonacci number, then this number belongs to the sequence A001906(n) = F(2n) where F(n) is the Fibonacci sequence.
The sequence giving the least k such that the sum of Fibonacci divisors of k^2 + 1 is equal to F(2*n) for n > 0 begins with: 0, 1, 3, 57, 47, 15007, 1679553, ...

Examples

			a(3) = 8 because the divisors of 3^2 + 1 = 10 are {1, 2, 5, 10}, and the sum of the Fibonacci divisors is 1 + 2 + 5 = 8.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(issqr(5*d^2+4) or issqr(5*d^2-4), d, 0)
    , d=numtheory[divisors](n^2+1)):seq(a(n), n=0..100);
  • Mathematica
    Array[DivisorSum[#^2 + 1, # &, AnyTrue[Sqrt[5 #^2 + 4 {-1, 1}], IntegerQ] &] &, 82, 0] (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8);
    a(n) = sumdiv(n^2+1, d, if (isfib(d), d)); \\ Michel Marcus, Dec 10 2020

Formula

a(A005574(n)) = 1 for n > 2.
a(n) = 3 when n^2 + 1 = 2*p, p prime and non-Fibonacci number.
a(n) = A005092(A002522(n)). - Michel Marcus, Aug 10 2022