A339621 Sum of Fibonacci divisors of n^2 + 1.
1, 3, 6, 8, 1, 16, 1, 8, 19, 3, 1, 3, 6, 42, 1, 3, 1, 8, 19, 3, 1, 50, 6, 8, 1, 3, 1, 8, 6, 3, 1, 16, 6, 8, 103, 3, 1, 8, 6, 3, 1, 3, 6, 8, 14, 3, 1, 55, 6, 3, 1, 3, 6, 8, 1, 126, 1, 21, 6, 3, 14, 3, 6, 8, 1, 3, 1, 8, 6, 3, 391, 3, 6, 21, 1, 3, 1, 8, 6, 3, 1, 37
Offset: 0
Keywords
Examples
a(3) = 8 because the divisors of 3^2 + 1 = 10 are {1, 2, 5, 10}, and the sum of the Fibonacci divisors is 1 + 2 + 5 = 8.
Links
- Michel Marcus, Table of n, a(n) for n = 0..10000
Programs
-
Maple
a:= n-> add(`if`(issqr(5*d^2+4) or issqr(5*d^2-4), d, 0) , d=numtheory[divisors](n^2+1)):seq(a(n), n=0..100);
-
Mathematica
Array[DivisorSum[#^2 + 1, # &, AnyTrue[Sqrt[5 #^2 + 4 {-1, 1}], IntegerQ] &] &, 82, 0] (* Michael De Vlieger, Dec 10 2020 *)
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8); a(n) = sumdiv(n^2+1, d, if (isfib(d), d)); \\ Michel Marcus, Dec 10 2020
Formula
a(A005574(n)) = 1 for n > 2.
a(n) = 3 when n^2 + 1 = 2*p, p prime and non-Fibonacci number.
Comments