A339685 a(n) = Sum_{d|n} 5^(d-1).
1, 6, 26, 131, 626, 3156, 15626, 78256, 390651, 1953756, 9765626, 48831406, 244140626, 1220718756, 6103516276, 30517656381, 152587890626, 762939846906, 3814697265626, 19073488282006, 95367431656276, 476837167968756, 2384185791015626, 11920929003987656
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
A339685:= func< n | (&+[5^(d-1): d in Divisors(n)]) >; [A339685(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
-
Mathematica
Table[Sum[5^(d - 1), {d, Divisors[n]}], {n, 1, 24}] nmax = 24; CoefficientList[Series[Sum[x^k/(1 - 5 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
PARI
a(n) = sumdiv(n, d, 5^(d-1)); \\ Michel Marcus, Dec 13 2020
-
SageMath
def A339685(n): return sum(5^(k-1) for k in (1..n) if (k).divides(n)) [A339685(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024
Formula
G.f.: Sum_{k>=1} x^k / (1 - 5*x^k).
G.f.: Sum_{k>=1} 5^(k-1) * x^k / (1 - x^k).
a(n) ~ 5^(n-1). - Vaclav Kotesovec, Jun 05 2021